

1 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

[MS-XLDM]:
Spreadsheet Data Model File Format

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain

Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

Preliminary Documentation. This Open Specification provides documentation for past and current

releases and/or for the pre-release (beta) version of this technology. This Open Specification is final Pr
el
im

in
ar

y

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com

2 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

documentation for past or current releases as specifically noted in the document, as applicable; it is

preliminary documentation for the pre-release (beta) versions. Microsoft will release final
documentation in connection with the commercial release of the updated or new version of this
technology. As the documentation may change between this preliminary version and the final

version of this technology, there are risks in relying on preliminary documentation. To the extent
that you incur additional development obligations or any other costs as a result of relying on this
preliminary documentation, you do so at your own risk.

Revision Summary

Date Revision History Revision Class Comments

01/20/2012 0.1 New Released new document.

Pr
el
im

in
ar

y

3 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Table of Contents

1 Introduction ... 10
1.1 Glossary ... 10
1.2 References .. 11

1.2.1 Normative References ... 11
1.2.2 Informative References ... 11

1.3 Overview .. 12
1.4 Relationship to Protocols and Other Structures .. 12
1.5 Applicability Statement ... 12
1.6 Versioning and Localization ... 13
1.7 Vendor-Extensible Fields ... 13

2 Structures .. 14
2.1 Storage Format of the Stream ... 14

2.1.1 Spreadsheet Data Model Header .. 14
2.1.1.1 Byte Order Mark ... 15
2.1.1.2 Stream Storage Signature ... 15
2.1.1.3 BackupLogHeaderType .. 15

2.1.2 Files Section .. 16
2.1.2.1 Partitions ... 17

2.1.2.1.1 SdfPartitionType ... 17
2.1.2.2 File Stream Format ... 17

2.1.2.2.1 File End Markers ... 18
2.1.2.2.1.1 CRC Marker .. 18

2.1.2.3 Log File ... 19
2.1.2.3.1 SdfBackupLogType .. 19

2.1.2.3.1.1 SdfBackupLogCollationsType ... 20
2.1.2.3.1.2 SdfBackupLogLanguagesType ... 20
2.1.2.3.1.3 SdfFileGroupsType ... 20

2.1.2.3.1.3.1 SdfFileGroupType ... 21
2.1.2.3.1.3.1.1 SdfFileGroupClassEnum ... 22

2.1.2.3.1.3.2 SdfFileListType .. 22
2.1.2.3.1.3.3 SdfFileListBackupFileType ... 22

2.1.2.3.1.4 WriteEnum ... 23
2.1.2.4 CryptKey.bin File .. 23

2.1.2.4.1 CryptKey.bin File Format .. 24
2.1.2.4.1.1 CryptKey.bin Structures ... 24

2.1.2.4.1.1.1 CryptKeyHeader ... 24
2.1.2.4.1.1.2 Key BLOB .. 25

2.1.2.4.1.1.2.1 PUBLICKEYSTRUC ... 26
2.1.2.4.1.1.3 CryptKeyTrailer .. 27

2.1.2.4.2 Creating an Exponent-of-One Private Key ... 27
2.1.3 Virtual Directory ... 29

2.1.3.1 VirtualDirectoryType ... 29
2.1.3.2 VirtualDirectoryBackupFileType .. 29

2.2 File Name Generation ... 30
2.2.1 Top-Level Folder .. 30
2.2.2 Top-Level Folders ... 30

2.2.2.1 Cube Folder ... 30
2.2.2.1.1 Cube Folder Folders ... 31

2.2.2.1.1.1 Measure Group Folder .. 31 Pr
el
im

in
ar

y

4 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.2.2.1.1.1.1 Measure Group Folder Folders .. 31
2.2.2.1.1.1.1.1 Partition Folder Files ... 31

2.2.2.1.1.1.2 Measure Group Folder Files ... 31
2.2.2.1.2 Cube Folder Files ... 32

2.2.2.1.2.1 Cube Information File ... 32
2.2.2.1.2.2 MDX Script Metadata File .. 32
2.2.2.1.2.3 Measure Group Metadata File .. 32

2.2.2.2 Data Source Folder ... 32
2.2.2.3 Dimension Folder .. 33

2.2.2.3.1 Metadata Files .. 33
2.2.2.3.1.1 Table Metadata Files .. 33
2.2.2.3.1.2 Table Information File .. 33
2.2.2.3.1.3 Table Relationship File .. 33
2.2.2.3.1.4 Column Hierarchy Files ... 34
2.2.2.3.1.5 User Hierarchy Metadata File .. 34

2.2.2.3.2 Data Files ... 34
2.2.2.3.2.1 Column Data Files ... 34
2.2.2.3.2.2 Table Relationship Index File ... 35
2.2.2.3.2.3 Column Hierarchy Position–to–Identifier File 35
2.2.2.3.2.4 Column Hierarchy Identifier–to–Position File 35
2.2.2.3.2.5 Column Hierarchy Hash Table ... 36
2.2.2.3.2.6 Column Hierarchy Dictionary ... 36
2.2.2.3.2.7 User Hierarchy Files ... 36

2.2.2.3.2.7.1 Child Count File ... 36
2.2.2.3.2.7.2 First Child Position File .. 37
2.2.2.3.2.7.3 Parent Position File ... 37
2.2.2.3.2.7.4 Multilevel Identifier File ... 37

2.3 Storage of Data Values ... 38
2.3.1 Column Data Storage .. 38

2.3.1.1 File Layout for Column Data Storage Files .. 39
2.3.1.1.1 General Layout of an .idf File .. 40
2.3.1.1.2 General Layout of an .idf File That Uses Hybrid Compression 41
2.3.1.1.3 Segment Size Limitations for .idf Files.. 42

2.3.2 Column Data Dictionary .. 42
2.3.2.1 File Layout for a Column Data Dictionary ... 43

2.3.2.1.1 XM_TYPE_LONG and XM_TYPE_REAL Data Dictionary Files 44
2.3.2.1.1.1 Required Hash Elements ... 45
2.3.2.1.1.2 Vector of Values .. 45

2.3.2.1.2 XM_TYPE_STRING Data Dictionary Files ... 46
2.3.2.1.2.1 BLOBs and Base64 Encoding ... 47
2.3.2.1.2.2 Required Hash Elements ... 47
2.3.2.1.2.3 Dictionary Page Layout ... 47
2.3.2.1.2.4 Dictionary String Store (Per Page) Information 49

2.3.2.1.2.4.1 Uncompressed Page Case.. 50
2.3.2.1.2.4.2 Compressed Page Case ... 51
2.3.2.1.2.4.3 Second Mark (End of Page Marker) ... 54

2.3.2.1.2.5 Dictionary Record Handles Vector .. 54
2.3.2.1.3 Dictionary Structures, Enumerations, and Constants 55

2.3.2.1.3.1 XM_TYPE Enumeration ... 55
2.3.2.1.3.2 Page Size Limitations for an XM_TYPE_STRING Hash Data Dictionary ... 55
2.3.2.1.3.3 Page Mask for an XM_TYPE_STRING Hash Data Dictionary 55
2.3.2.1.3.4 Huffman Character Set Mode .. 56 Pr
el
im

in
ar

y

5 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.3.2.1.3.5 Record Handle Structures for an XM_TYPE_STRING Hash Data

Dictionary .. 56
2.3.3 Column Data Hierarchy Hash Index .. 57

2.3.3.1 File Layout for Hash Index Files .. 57
2.3.3.1.1 Required Elements for All Files That Use Hashing 57
2.3.3.1.2 Required Elements for Hash Index Files ... 59

2.3.3.1.2.1 Records and Hash Statistics .. 59
2.3.3.1.2.2 Hash Bin Entries .. 62
2.3.3.1.2.3 Overflow Hash Entries .. 63

2.3.3.1.3 Hashing Algorithms ... 64
2.3.3.1.4 Hash Structures, Enumerations and Constants .. 64

2.3.3.1.4.1 XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT 64
2.3.3.1.4.2 Hash Algorithm Enumeration and Constant 65
2.3.3.1.4.3 Hash Bin Bucket Size Minimums .. 65
2.3.3.1.4.4 HashBin Structure ... 66
2.3.3.1.4.5 HashEntry Structure .. 67
2.3.3.1.4.6 XM_HASH_ENTRY_COUNT_PER_BIN .. 69

2.3.4 RowNumber Column ... 70
2.3.4.1 File Layout for the RowNumber Column ... 70

2.4 System-Generated Data Files .. 70
2.4.1 Column Data Position–to–Identifier Mapping .. 70

2.4.1.1 File Layout for Column Data Position–to–Identifier Mapping File 71
2.4.2 Column Data Identifier–to–Position Mapping .. 71

2.4.2.1 File Layout for Column Data Identifier–to–Position Mapping File 72
2.4.3 Relationship Index .. 72

2.4.3.1 File Layout for Relationship Index File ... 72
2.4.4 User Hierarchy System-Generated Files .. 73

2.4.4.1 User Hierarchy Child Count .. 74
2.4.4.1.1 File Layout for User Hierarchy Child Count .. 74

2.4.4.2 User Hierarchy First Child Position .. 75
2.4.4.2.1 File Layout for User Hierarchy First Child Position 75

2.4.4.3 User Hierarchy Multilevel Identifier ... 75
2.4.4.3.1 File Layout for User Hierarchy Multilevel Identifier 76

2.4.4.4 User Hierarchy Parent Position ... 76
2.4.4.4.1 File Layout for User Hierarchy Parent Position ... 77

2.5 Metadata Files ... 77
2.5.1 XMObject Document Node Element ... 77

2.5.1.1 XMObjectPropertiesType .. 78
2.5.1.2 XMObjectMembersType ... 78
2.5.1.3 XMObjectCollectionsType ... 79
2.5.1.4 XMObjectDataObjectsType ... 79
2.5.1.5 XMObjectMemberType ... 80
2.5.1.6 XMObjectCollectionType .. 80
2.5.1.7 XMObjectDataObjectType .. 81
2.5.1.8 XMObjectMemberNameEnum ... 81
2.5.1.9 XMObjectCollectionNameEnum ... 82
2.5.1.10 XMObjectClassNameEnum.. 83

2.5.2 XMObject Definitions by class Attribute ... 89
2.5.2.1 XMObject class="XMSimpleTable" ... 89

2.5.2.1.1 XMSimpleTablePropertiesType .. 89
2.5.2.1.2 XMSimpleTableMembersType .. 90

2.5.2.1.2.1 XMSimpleTableMemberType.. 90
2.5.2.1.2.2 XMSimpleTableMemberNameEnum .. 91 Pr
el
im

in
ar

y

6 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.1.2.3 XMSimpleTableXMObjectMemberClassNameEnum 92
2.5.2.1.3 XMSimpleTableCollectionsType ... 93

2.5.2.1.3.1 XMSimpleTableCollectionType ... 93
2.5.2.1.3.2 XMSimpleTableCollectionNameEnum .. 94
2.5.2.1.3.3 XMSimpleTableXMObjectCollectionClassNameEnum 94

2.5.2.2 XMObject class="XMTableStats" ... 95
2.5.2.2.1 XMTableStatsPropertiesType ... 95

2.5.2.3 XMObject class="XMRawColumn" ... 96
2.5.2.3.1 XMRawColumnPropertiesType ... 96
2.5.2.3.2 XMRawColumnMembersType .. 98

2.5.2.3.2.1 XMRawColumnMemberType .. 99
2.5.2.3.2.2 XMRawColumnMemberNameEnum ... 99
2.5.2.3.2.3 XMRawColumnXMObjectMemberClassNameEnum 100

2.5.2.3.3 XMRawColumnCollectionsType ... 100
2.5.2.3.3.1 XMRawColumnCollectionType ... 100

2.5.2.3.4 XMRawColumnDataObjectsType ... 101
2.5.2.3.4.1 XMRawColumnDataObjectType ... 101
2.5.2.3.4.2 XMRawColumnXMObjectDataClassNameEnum 102

2.5.2.4 XMObject class="XMRelationship" .. 103
2.5.2.4.1 XMRelationshipPropertiesType ... 103
2.5.2.4.2 XMRelationshipDataObjectsType .. 103
2.5.2.4.3 XMRelationshipDataObjectType .. 104
2.5.2.4.4 XMRelationshipXMDataObjectXMObjectClassNameEnum 104

2.5.2.5 XMObject class="XMRelationshipIndexSparseDIDs" 105
2.5.2.5.1 XMRelationshipIndexSparseDIDsPropertiesType 105

2.5.2.6 XMObject class="XMRelationshipIndexDenseDIDs" 106
2.5.2.6.1 XMRelationshipIndexDenseDIDsPropertiesType 106

2.5.2.7 XMObject class="XMRelationshipIndex123DIDs" .. 107
2.5.2.8 XMObject class="XMColumnStats" ... 107

2.5.2.8.1 XMColumnStatsPropertiesType ... 107
2.5.2.9 XMObject class="XMHierarchy" ... 111

2.5.2.9.1 XMHierarchyPropertiesType ... 111
2.5.2.10 XMObject class="XMUserHierarchy" ... 113

2.5.2.10.1 XMUserHierarchyPropertiesType ... 113
2.5.2.11 XMObject class="XMHierarchyDataID2PositionHashIndex" 114
2.5.2.12 XMObject class="XMColumnSegment" .. 114

2.5.2.12.1 XMColumnSegmentPropertiesType .. 115
2.5.2.12.2 XMColumnSegmentMembersType ... 115

2.5.2.12.2.1 XMColumnSegmentMemberType ... 115
2.5.2.12.2.2 XMColumnSegmentMemberNameEnum ... 116
2.5.2.12.2.3 XMColumnSegmentXMObjectMemberClassNameEnum 117

2.5.2.13 XMObject class="XMPartition" ... 119
2.5.2.13.1 XMPartitionPropertiesType ... 119

2.5.2.14 XMObject class="XMMultiPartSegmentMap" .. 119
2.5.2.14.1 XMMultiPartSegmentMapPropertiesType .. 120
2.5.2.14.2 XMMultiPartSegmentMapCollectionsType ... 120
2.5.2.14.3 XMMultiPartSegmentMapCollectionType ... 121

2.5.2.14.3.1 XMMultiPartSegmentMapXMObjectCollectionClassNameEnum 121
2.5.2.15 XMObject class="XMSegment1Map" ... 122

2.5.2.15.1 XMSegment1MapPropertiesType ... 122
2.5.2.16 XMObject

class="XMSegmentEqualMapEx<XMSegmentEqualMap_FastInstantiation>" ... 122
2.5.2.16.1 XMSegmentEqualMapEx_PropertiesType .. 123 Pr
el
im

in
ar

y

7 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.17 XMObject

class="XMSegmentEqualMapEx<XMSegmentEqualMap_ComplexInstantiation
>" .. 123

2.5.2.18 XMObject class="XMValueDataDictionary<XM_Long>" 124
2.5.2.18.1 PropertiesValueDictionaryType ... 124

2.5.2.19 XMObject class="XMValueDataDictionary<XM_Real>" 125
2.5.2.20 XMObject class="XMHashDataDictionary<XM_Real>" 125

2.5.2.20.1 HashDictionaryAttributeGroup .. 126
2.5.2.20.2 PropertiesHashDictionaryRealType .. 126

2.5.2.21 XMObject class="XMHashDataDictionary<XM_Long>" 126
2.5.2.21.1 PropertiesHashDictionaryLongType ... 127

2.5.2.22 XMObject class="XMHashDataDictionary<XM_String>" 127
2.5.2.22.1 PropertiesHashDictionaryStringType ... 128

2.5.2.23 XMObject class="XMRENoSplitCompressionInfo<1>" 128
2.5.2.23.1 XMRENoSplitCompressionInfoPropertiesType 129

2.5.2.24 XMObject class="XMRENoSplitCompressionInfo<2>" 129
2.5.2.25 XMObject class="XMRENoSplitCompressionInfo<3> 129
2.5.2.26 XMObject class="XMRENoSplitCompressionInfo<4> 130
2.5.2.27 XMObject class="XMRENoSplitCompressionInfo<5> 130
2.5.2.28 XMObject class="XMRENoSplitCompressionInfo<6> 131
2.5.2.29 XMObject class="XMRENoSplitCompressionInfo<7> 131
2.5.2.30 XMObject class="XMRENoSplitCompressionInfo<8> 132
2.5.2.31 XMObject class="XMRENoSplitCompressionInfo<9> 132
2.5.2.32 XMObject class="XMRENoSplitCompressionInfo<10> 132
2.5.2.33 XMObject class="XMRENoSplitCompressionInfo<12> 133
2.5.2.34 XMObject class="XMRENoSplitCompressionInfo<16> 133
2.5.2.35 XMObject class="XMRENoSplitCompressionInfo<21> 134
2.5.2.36 XMObject class="XMRENoSplitCompressionInfo<32>" 134
2.5.2.37 XMObject class="XM123CompressionInfo" .. 135
2.5.2.38 XMRLECompressionInfo .. 135

2.5.2.38.1 XMRLECompressionInfoPropertiesType .. 135
2.5.2.39 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<1>>" ... 136
2.5.2.39.1 XMHybridRLECompressionInfoMembersType .. 136
2.5.2.39.2 XMHybridRLECompressionInfoMemberType.. 137
2.5.2.39.3 XMHybridRLECompressionInfoMemberNameEnum 138
2.5.2.39.4 XMHybridRLECompressionInfoXMObjectClassNameEnum 138

2.5.2.40 XMObject class="XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<2>>" ... 140

2.5.2.41 XMObject class="XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<3>>" ... 140

2.5.2.42 XMObject class="XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<4>>" ... 141

2.5.2.43 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<5>>" ... 141
2.5.2.44 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<6>>" ... 142
2.5.2.45 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<7>>" ... 142
2.5.2.46 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<8>>" ... 143
2.5.2.47 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<9>>" ... 143 Pr
el
im

in
ar

y

8 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.48 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<10>>" ... 144
2.5.2.49 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<12>>" ... 144
2.5.2.50 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<16>>" ... 145
2.5.2.51 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<21>>" ... 145
2.5.2.52 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<32>>" ... 146
2.5.2.53 XMObject class="XMHybridRLECompressionInfo<class

XM123CompressionInfo>" ... 146
2.5.2.54 XMObject class="ColumnSegmentStats" ... 147

2.5.2.54.1 XMColumnSegmentStatsPropertiesType .. 147
2.5.2.55 XMObject class="XMRawColumnPartitionDataObject" 148

2.5.2.55.1 XMRawColumnPartitionDataObjectPropertiesType 148
2.5.3 Contents of the .tbl.xml Files .. 149

2.6 Model OLAP Files .. 149
2.6.1 Load Element Document Node .. 149

2.6.1.1 MajorObjectTabularModel ... 150
2.6.1.2 ObjectReferenceTabularModel ... 150
2.6.1.3 TabularModelElementsGroup Group ... 151

2.6.2 DataSourceTabularModel .. 151
2.6.3 DataSourceViewTabularModel ... 152
2.6.4 DatabaseTabularModel ... 152
2.6.5 CubeTabularModel ... 153
2.6.6 DimensionTabularModel ... 153
2.6.7 MeasureGroupTabularModel .. 154
2.6.8 PartitionTabularModel .. 155
2.6.9 MdxScriptTabularModel .. 155
2.6.10 OLAP Information Files ... 156

2.6.10.1 Partition Information File .. 156
2.6.10.1.1 PartitionInformationType ... 156

2.6.10.2 Dimension Information File ... 157
2.6.10.2.1 DimensionInformationType .. 157

2.6.10.2.1.1 DimensionInformationPropertiesType .. 158
2.6.10.2.1.1.1 DimensionInformationPropertyType ... 158
2.6.10.2.1.1.2 DimensionInformationMapDataSetType 158

2.6.10.3 Cube Information File ... 159
2.6.10.3.1 CubeInformationType ... 159

2.7 Compression .. 160
2.7.1 XMRENoSplit Compression Algorithms .. 160

2.7.1.1 XMRENoSplitCompressionInfo<1> ... 160
2.7.1.2 XMRENoSplitCompressionInfo<2> ... 162
2.7.1.3 XMRENoSplitCompressionInfo<3> ... 163
2.7.1.4 XMRENoSplitCompressionInfo<4> ... 165
2.7.1.5 XMRENoSplitCompressionInfo<5> ... 166
2.7.1.6 XMRENoSplitCompressionInfo<6> ... 168
2.7.1.7 XMRENoSplitCompressionInfo<7> ... 169
2.7.1.8 XMRENoSplitCompressionInfo<8> ... 171
2.7.1.9 XMRENoSplitCompressionInfo<9> ... 172
2.7.1.10 XMRENoSplitCompressionInfo<10> .. 174
2.7.1.11 XMRENoSplitCompressionInfo<12> .. 175 Pr
el
im

in
ar

y

9 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.7.1.12 XMRENoSplitCompressionInfo<16> .. 177
2.7.1.13 XMRENoSplitCompressionInfo<21> .. 178
2.7.1.14 XMRENoSplitCompressionInfo<32> .. 179

2.7.2 XM123 Compression Algorithm.. 180
2.7.2.1 XM123CompressionInfo .. 181

2.7.3 XMHybridRLE Compression Algorithms ... 181
2.7.3.1 Conceptual Overview of RLE Entries and Bit-Packing Entries.......................... 182
2.7.3.2 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<1>> 185
2.7.3.3 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<2>> 186
2.7.3.4 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<3>> 187
2.7.3.5 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<4>> 188
2.7.3.6 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<5>> 189
2.7.3.7 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<6>> 191
2.7.3.8 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<7>> 192
2.7.3.9 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<8>> 193
2.7.3.10 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<9>> 193
2.7.3.11 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<10>> ... 194
2.7.3.12 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<12>> ... 196
2.7.3.13 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<16>> ... 197
2.7.3.14 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<21>> ... 197
2.7.3.15 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<32>> ... 198
2.7.3.16 XMHybridRLECompressionInfo<class XM123CompressionInfo>.................... 199

2.7.4 Huffman Compression .. 199
2.7.4.1 Huffman Implementation Constraints ... 200

2.7.4.1.1 Classical Unbalanced Huffman Tree .. 200
2.7.4.1.2 Minimum and Maximum Codeword Sizes ... 200
2.7.4.1.3 Huffman Alphabet Size .. 201
2.7.4.1.4 Single and Multiple Character Set Modes ... 201
2.7.4.1.5 Huffman Information Provided in an XM_TYPE_STRING Dictionary............ 202

2.7.4.2 Conceptual Overview of a Huffman Tree ... 203
2.7.5 Xpress Compression .. 205

3 Structure Examples .. 206
3.1 tbl.xml Metadata File ... 206
3.2 Multiple-Segment Column Data .idf File ... 220
3.3 Dictionary File .. 222

4 Security .. 225
4.1 Security Considerations for Implementers .. 225
4.2 Index of Security Parameters ... 225

5 Appendix A: Compression Mask for XMRENoSplit Compression Algorithms 227

6 Appendix B: Product Behavior .. 243

7 Change Tracking... 244

8 Index ... 245

Pr
el
im

in
ar

y

10 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

1 Introduction

The Spreadsheet Data Model File Format defines a binary file format that is used to store a portion
of a tabular data model, which represents tables, data, and relationships, within a containing
spreadsheet file format.

Sections 1.7 and 2 of this specification are normative and contain RFC 2119 language. All other
sections and examples in this specification are informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

Augmented Backus-Naur Form (ABNF)
cyclic redundancy check (CRC)
GUID
language code identifier (LCID)
little-endian

universally unique identifier (UUID)

The following terms are defined in [MS-OFCGLOS]:

assembly
base64 encoding
binary large object (BLOB)
calculated column
hierarchy

measure group
multidimensional expression (MDX)
OLAP
OLAP cube
OLE DB
Online Analytical Processing (OLAP)

partition

table
XML schema definition (XSD)

The following terms are specific to this document:

hybrid compression: A type of data compression that uses a combination of run length
encoding and bit-wise compression.

intrinsic hierarchy: A hierarchical data structure that is automatically formed from every single
column of data in a spreadsheet and contains one node for every unique data value within

each column.

segment map: A data structure that specifies which particular segment contains each individual
range of data in a spreadsheet.

tabular data model: A representation of tables, data, and relationships. It must contain at
least one table, and can contain definitions for relationships between the table's columns,
hierarchical relationships between columns, or calculated columns. It can also contain data

values, or connection information to retrieve data values from external locations. Pr
el
im

in
ar

y

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

11 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or

SHOULD NOT.

1.2 References

References to Microsoft Open Specification documents do not include a publishing year because links
are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[MS-SPBEPO2] Microsoft Corporation, "SharePoint Back-End Protocols Overview Version 2".

[MS-SPFEPO2] Microsoft Corporation, "SharePoint Front-End Protocols Overview Version 2".

[MS-SSAS] Microsoft Corporation, "SQL Server Analysis Services Protocol Specification".

[MS-WUSP] Microsoft Corporation, "Windows Update Services: Client-Server Protocol Specification".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD
68, RFC 5234, January 2008, http://www.rfc-editor.org/rfc/rfc5234.txt

[XMLSCHEMA1] Thompson, H.S., Ed., Beech, D., Ed., Maloney, M., Ed., and Mendelsohn, N., Ed.,

"XML Schema Part 1: Structures", W3C Recommendation, May 2001,

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

[XMLSCHEMA2] Biron, P.V., Ed. and Malhotra, A., Ed., "XML Schema Part 2: Datatypes", W3C
Recommendation, May 2001, http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

1.2.2 Informative References

[MSDN-AnalysisServices] Microsoft Corporation, "Managing Backing Up and Restoring (Analysis

Services)", http://msdn.microsoft.com/en-us/library/ms174874.aspx

[MSDN-CRYPTO] Microsoft Corporation, "Cryptography Reference", http://msdn.microsoft.com/en-
us/library/aa380256.aspx

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MSKB228786] Microsoft Corporation, "How to export and import plain text session keys by using

CryptoAPI", http://support.microsoft.com/kb/228786

[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary".

[MS-OFFMACRO] Microsoft Corporation, "Office Macro-Enabled File Format Specification". Pr
el
im

in
ar

y

http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-SPBEPO2%5d.pdf
%5bMS-SPFEPO2%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-WUSP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90610
http://go.microsoft.com/fwlink/?LinkId=231042
http://go.microsoft.com/fwlink/?LinkId=89984
http://go.microsoft.com/fwlink/?LinkId=89984
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=230875
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFFMACRO%5d.pdf

12 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

[MS-OFFMACRO2] Microsoft Corporation, "Office Macro-Enabled File Format Version 2 Structure
Specification".

[MS-XLSB] Microsoft Corporation, "Excel Binary File Format (.xlsb) Structure Specification".

[MS-XLSX] Microsoft Corporation, "Excel Extensions to the Office Open XML SpreadsheetML File

Format (.xlsx) Specification".

[XML10] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0 (Third Edition)",
February 2004, http://www.w3.org/TR/REC-xml

1.3 Overview

This file format, which is used to store a tabular data model file within a spreadsheet file, can
contain one or more of the following types of metadata:

A definition of a data source for data that is stored in a table. The data source can be a range of

cells in a spreadsheet, one or more tables in a relational database, or a cube that is stored in an

Online Analytical Processing (OLAP) database.

The relationships between the included tables, if any.

A user-defined, hierarchical relationship among the columns of a table.

Any calculated columns that are created as a function of other, existing columns.

This file format can also include connection strings and passwords for accessing external data
sources. Any data that is entered directly into the tabular data model—for example, data that is
entered manually or by means of a cut-and-paste operation—can also be stored by this file format.

1.4 Relationship to Protocols and Other Structures

This file format is hosted within the structures that are defined in the following references:

[MS-XLSX] describes a spreadsheet file format.

[MS-XLSB] describes a spreadsheet file format.

[MS-OFFMACRO] describes a spreadsheet file format.

[MS-OFFMACRO2] describes a spreadsheet file format.

This file format is related to the protocols that are defined in the following references:

[MS-SSAS] describes the protocol for the OLAP server on which the OLAP aspects of the

metadata are derived. (The metadata that describes the data contained by this file format is
based on both a tabular data model and OLAP.)

[MSDN-AnalysisServices] describes backup and restore operations that produce a file with the

.abf extension. This structure is an .abf file.

Portions of this structure are stored as XML, as described in [XML10].

1.5 Applicability Statement

This structure is used to persist a file within a containing file, as described in [MS-XLSX], [MS-
XLSB], [MS-OFFMACRO], or [MS-OFFMACRO2]. This structure applies to the case where a user Pr

el
im

in
ar

y

%5bMS-OFFMACRO2%5d.pdf
%5bMS-OFFMACRO2%5d.pdf
%5bMS-XLSB%5d.pdf
%5bMS-XLSX%5d.pdf
%5bMS-XLSX%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90600
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-XLSX%5d.pdf
%5bMS-XLSB%5d.pdf
%5bMS-OFFMACRO%5d.pdf
%5bMS-OFFMACRO2%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=231042
http://go.microsoft.com/fwlink/?LinkId=90600
%5bMS-XLSX%5d.pdf
%5bMS-XLSB%5d.pdf
%5bMS-XLSB%5d.pdf
%5bMS-OFFMACRO%5d.pdf
%5bMS-OFFMACRO2%5d.pdf

13 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

creates a tabular data model within a session by using spreadsheet software that produces such a
containing file.

1.6 Versioning and Localization

This document covers versioning issues in the following areas:

Structure Versions: This document covers the following information:

The version of this structure is stored within the file. For more information, see section 2.1.2.3.1

Many of the XML elements are stamped with the provider version of the server that created an

instance of this structure. For more information, see section 2.5.

Localization: This document covers the following information:

All the string values that are stored in the structure are Unicode and hence support any

language’s Unicode characters.

OLAP metadata objects support the user specification of a language and a collation. For more

information, see section 2.6.

This structure includes a collection of languages and a collection of collations. For more

information, see section 2.1.2.3.1.

1.7 Vendor-Extensible Fields

The OLAP metadata objects have an Annotations collection, in which vendors can store vendor-
specific information. For more details, see section 2.6.

Pr
el
im

in
ar

y

14 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2 Structures

2.1 Storage Format of the Stream

All of the files that are generated by an instance of the Spreadsheet Data Model are formed into a
stream and stored within a spreadsheet file. The format of the storage container is also referred to
as the Spreadsheet Data Model File Format and is described in the remainder of this section.

The Spreadsheet Data Model file consists of a header that is followed by a partition marker that is
then followed by all the files in the directory, with each file separated by a marker. These files are

then followed by a backup log and a virtual directory that contains the file list and related
information. The three major sections—Spreadsheet Data Model header; stream of files, including
the Spreadsheet Data Model backup log file at the end and the partition information at the
beginning; and Spreadsheet Data Model virtual directory—are all Spreadsheet Data Model page
aligned and MUST be padded with zeros (if necessary) to meet page alignment requirements.

A Spreadsheet Data Model file page MUST be 4096 bytes. This definition of the page size applies

only to the Spreadsheet Data Model File Format, not to the formats of the files that are contained

inside the Spreadsheet Data Model. File formats within the Spreadsheet Data Model might use a
different definition of page size for their formats.

Most of the Spreadsheet Data Model file is saved by using XML metadata (Spreadsheet Data Model
header, Spreadsheet Data Model backup log file, and Spreadsheet Data Model virtual directory),
with the files themselves being streamed into the Spreadsheet Data Model file directly in their native
format (binary or XML). However, some elements within the Spreadsheet Data Model header are

binary or calculated values. Likewise, the cyclic redundancy check (CRC) file end marker involves
the use of a CRC algorithm.

2.1.1 Spreadsheet Data Model Header

The Spreadsheet Data Model header is page aligned but never compressed—even if the Spreadsheet
Data Model file as whole has been compressed. Therefore, the header is always one page (4096
bytes) in size and padded with zeros between the last header element and the end of the page.

The Spreadsheet Data Model header consists of several elements. These elements MUST be in the
following order and conform exactly as defined.

The first element is the byte order mark (section 2.1.1.1), which MUST be 2 bytes. The byte order
mark is also used prior to the beginning of the stream of files (section 2.1.2)—preceding the
partition information)—as well as prior to the writing of the Spreadsheet Data Model backup log
(section 2.1.2.3), which is the last file in the streamed files section. The byte order mark is not used
before the virtual directory section (section 2.1.3).

The second element in the header is the stream storage signature (section 2.1.1.2). These first two
elements (byte order mark and stream storage signature) are binary, not XML.

After these first two binary elements, the subsequent elements in the header are XML tags. These
elements MUST be in the order that is specified for the BackupLogHeaderType complex type
(section 2.1.1.3). These XML tags are followed by any padding with zeros that is necessary to fill the

page to the page boundary at 4096 bytes.

There are no breaks or padding between any of the elements. Pr
el
im

in
ar

y

%5bMS-GLOS%5d.pdf

15 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.1.1.1 Byte Order Mark

The byte order mark indicates to the system the byte order of the file. It is the first element of both
the header and, by extension, the entire Spreadsheet Data Model file. There MUST NOT be any

breaks before or after this element. The byte order mask consists of 2 bytes. The first byte MUST be
set to 0xFF. The second byte MUST be set to 0xFE.

The byte order mark MUST also be used to begin the files section and therefore precedes the
partition marker that leads the files section. The byte order mark MUST also be used before the
backup log, which is the last file in the files section. For more details about the files section, see
section 2.1.2 and section 2.1.3. For more details about the backup log file, see section 2.1.1.5.1.

2.1.1.2 Stream Storage Signature

The stream storage signature indicates to the system that the file is a valid Spreadsheet Data Model
file. The stream storage signature is a byte stream. The stream storage signature MUST come
directly after the byte order mark and directly before the rest of the header without any breaks.

The stream storage signature MUST be set to the following ASCII string:

STREAM_STORAGE_SIGNATURE_)!@#$%^&*(

The stream storage signature MUST be encoded in Unicode.

2.1.1.3 BackupLogHeaderType

The BackupLogHeaderType complex type is the type of the BackupLog element, which is the
XML element that contains the XML content of the backup log header (section 2.1.1).

The backup log header format begins with the byte order mark (section 2.1.1.1) and the stream
storage signature (section 2.1.1.2) and is page aligned (see section 2.1 and section 2.1.1). The
backup log is an XML document. Its document node is the BackupLog element.

<xs:complexType name="BackupLogHeaderType">

 <xs:sequence>

 <xs:element name="BackupRestoreSyncVersion" type="xs:int"/>

 <xs:element name="Fault" type="xs:boolean"/>

 <xs:element name="faultcode" type="xs:unsignedInt"/>

 <xs:element name="ErrorCode" type="xs:boolean"/>

 <xs:element name="EncryptionFlag" type="xs:boolean"/>

 <xs:element name="EncryptionKey" type="xs:int"/>

 <xs:element name="ApplyCompression" type="xs:boolean"/>

 <xs:element name="m_cbOffsetHeader" type="xs:unsignedLong"/>

 <xs:element name="DataSize" type="xs:unsignedLong"/>

 <xs:element name="Files" type="xs:unsignedInt"/>

 <xs:element name="ObjectID">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value=

 "[0-9A-F]{8}-[0-9A-F]{4}-[0-9A-F]{4}-[0-9A-F]{4}-[0-9A-F]{12}" />

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="m_cbOffsetData" type="xs:unsignedLong"/>

 </xs:sequence> Pr
el
im

in
ar

y

16 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

</xs:complexType>

BackupRestoreSyncVersion: The internal version number of the software that has created this

file. This value MUST be set to 140.

Fault: A Boolean value specifying that a CRC signature is not being used as an end-of-file marker
(section 2.1.2.2.1). This value MUST be set to false. The CRC signature MUST be used. The CRC
signature is a calculated value (section 2.1.2.2.1.1).

Faultcode: A value that is unused. The value MUST be an integer to avoid load errors, but the value
itself does not matter.

ErrorCode: A Boolean value specifying that a CRC signature is being used as an end-of-file marker
(section 2.1.2.2.1). This value MUST be set to true. The CRC signature MUST be used. The CRC
signature is a calculated value (section 2.1.2.2.1.1).

EncryptionFlag: A Boolean value that specifies whether the Spreadsheet Data Model file is

encrypted. The header MUST NOT be encrypted (section 2.1.1). This value MUST be set to false.

EncryptionKey: The version of encryption that is being used. This value MUST contain an integer to
avoid load errors, but the value itself does not matter.

ApplyCompression: A Boolean value that specifies whether compression has been applied to the
file. This value MUST be set to true. The header is the exception; it is never compressed. Individual
files within the Spreadsheet Data Model file can also be compressed, regardless of whether the
Spreadsheet Data Model file itself is compressed. The Spreadsheet Data Model file is compressed by
using Xpress compression (section 2.7.5).

m_cbOffsetHeader: The byte offset of the beginning of the file list—that is, the byte offset of the

virtual directory structure that contains the list of files in the directory. The offset value is calculated
from the beginning of the Spreadsheet Data Model file. For example, if the offset is 28,672, the file
list (the virtual directory) begins at byte 28,672 (hexadecimal 0x7000) in the file. The offset is
Spreadsheet Data Model page aligned and therefore MUST be a multiple of the Spreadsheet Data

Model file page size (section 2.1). For more information about the virtual directory that contains the
file list, see section 2.1.3.

DataSize: The size, in bytes, of the file list (the virtual directory) in the Spreadsheet Data Model

file. For example, if the file size is set to 3748, the entire virtual directory is 3748 bytes in size
(section 2.1.3).

Files: The number of file entries in the file list (the virtual directory). For example, if this value is
set to 5, five files exist in the virtual directory and five files are serially stored in the Spreadsheet
Data Model file.

ObjectID: A value that is unused and MUST be ignored. This value MUST be a valid universally
unique identifier (UUID); otherwise, the file might not load.

m_cbOffsetData: A value that indicates the beginning of the stored files section and the end of the
header section. The value is in bytes. For example, if the value is 4096, the beginning of the stored

files section begins at byte 4096 (hexadecimal 0x1000). For more information about the header and
the header size, see section 2.1.1.

2.1.2 Files Section

This section specifies the files in the file stream. Pr
el
im

in
ar

y

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

17 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.1.2.1 Partitions

A partitions marker exists between the Spreadsheet Data File header (including its padding) and the
beginning of the actual files in the directory. The partitions marker is preceded by the byte order

mark (section 2.1.1.1). The partitions marker is also treated like any other file in the files section
and is terminated by a CRC marker (section 2.1.2.2.1.1).

The Partitions section is an XML document with a Partitions element as its document node. The
Partitions element is of type SdfPartitionsType.

<xs:complexType name="SdfPartitionsType">

 <xs:sequence>

 <xs:element name="Partition" type="SdfPartitionType"

 maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

Partition: A complex type element that specifies the properties of a partition.

2.1.2.1.1 SdfPartitionType

The SdfPartitionType complex type specifies the properties of a partition.

<xs:complexType name="SdfPartitionType">

 <xs:sequence>

 <xs:element name="ObjectPath" type="xs:string"/>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="DataSize" type="xs:long"/>

 <xs:element name="Location" type="xs:string"/>

 <xs:element name="DataSourceID" type="xs:string"/>

 <xs:element name="ConnectionString" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

ObjectPath: A value that is unused and MUST be ignored.

Name: A value that is unused and MUST be ignored.

DataSize: A value that is unused and MUST be ignored.

Location: A value that is unused and MUST be ignored.

DataSourceID: A value that is unused and MUST be ignored.

ConnectionString: A value that is unused and MUST be ignored.

2.1.2.2 File Stream Format

All files in the Spreadsheet Data Model file are stored in their native format, whether XML or binary.

A CRC marker (section 2.1.2.2.1.1) delineates the end of one file and the beginning of the next file
(if present).

The byte order mark (section 2.1.1.1) begins this files section, which is followed by the partitions

marker (section 2.1.2.1), which is then all the files except for the backup log. At this point, there is
another byte order mark that is followed by the backup log (section 2.1.2.3), which is the last file. Pr

el
im

in
ar

y

18 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

A CRC marker exists between the partitions marker (section 2.1.2.1) and the first file. As stated
earlier in this section, all the files in this stream of files are terminated by a CRC marker. Finally, a

CRC marker follows the last file, which is the backup log (section 2.1.2.3).

The entire files section MUST be Spreadsheet Data Model file page aligned (section 2.1). Many pages

of files could exist, and all the files are streamed in without breaks, except for their CRC markers.
However, following the last file in the stream (the backup log), padding with zeros MUST exist from
the log’s CRC marker to the end of the page boundary.

The virtual directory (section 2.1.3) begins at the start of the next page.

2.1.2.2.1 File End Markers

All the files in the Spreadsheet Data Model file are terminated by an end-of-file marker. A CRC

marker is used to indicate the end of a file and, therefore, also the beginning of the next file (if
present).

The CRC marker is a calculated value (section 2.1.2.2.1.1).

2.1.2.2.1.1 CRC Marker

The CRC marker provides a calculated signature value that indicates the end of one file and the

beginning of the next file (if present). If the CRC marker is being used, the ErrorCode element of
the header metadata (section 2.1.1.3) will be set to true.

CRC signatures are typically used to detect the alteration of data during transmission in
communication systems but can also be used to detect the alteration of backup files, such as those
in the Spreadsheet Data Model file.

The CRC is calculated according to the following pseudocode:

SET constant value CRC32_POLY to 0x04C11DB7

CREATE unsigned 32 bit integer array of 256 elements and name it crc32TableArray

CREATE unsigned 32 bit integer value, name it crcValue and SET it to 0xFFFFFFFF

CALL InitializationOfCRC32TableArray Function (as follows)

 FOR each element iValue in crc32TableArray

 FOR (cValue = (iValue LEFT_BITSHIFT 24), jValue = 8), continue loop until jValue>0

 SET cValue to result of (cValue BITWISE_AND 0x80000000)

 IF cValue evaluates to TRUE (non-zero) THEN

 SET cValue to result of ((cValue LEFT_BITSHIFT 1) BITWISE_EXCLUSIVEOR

CRC32_POLY)

 If cValue evaluates to FALSE (zero) THEN

 SET cValue to result of (cValue LEFT_BITSHIFT 1)

 SET crc32TableArray at index position (iValue) to cValue

 DECREMENT jValue by 1

 END FOR

 END FOR

CALL Calculation of crc32Value (after InitializationOfCRC32TableArray)(as follows)

 INPUT to function is an array of BYTES, called pBuffer, and also the buffer’s length,

cLength

 FOR each byte in pBuffer up to its length

 SET tempIndex to result of ((crcValue RIGHT_BITSHIFT 24) BITWISE_EXCLUSIVEOR (value

contained by the currently indexed byte in pBuffer))

 SET crcValue to result of ((crcValue LEFT_BITSHIFT 8) BITWISE_EXCLUSIVEOR

(crc32TableArray at index position (tempIndex))) Pr
el
im

in
ar

y

19 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 END FOR

2.1.2.3 Log File

The log contains a list of all the files that are included in the instance of the Spreadsheet Data
Model, except for the log itself, the virtual directory, and the partitions section. The log is the last
file in the files section (see section 2.1.2.2). The log is an XML document. The document node is the
BackupLog element.

2.1.2.3.1 SdfBackupLogType

The SdfBackupLogType is the type of the BackupLog document node element in the file list
section of the Spreadsheet Data Model file. It contains a logging of the files that are included in the
Spreadsheet Data Model instance.

<xs:complexType name="SdfBackupLogType">

 <xs:sequence>

 <xs:element name="BackupRestoreSyncVersion" type="xs:int"/>

 <xs:element name="ServerRoot" type="xs:string"/>

 <xs:element name="SvrEncryptPwdFlag" type="xs:boolean"/>

 <xs:element name="ServerEnableBinaryXML" type="xs:boolean"/>

 <xs:element name="ServerEnableCompression" type="xs:boolean"/>

 <xs:element name="CompressionFlag" type="xs:boolean"/>

 <xs:element name="EncryptionFlag" type="xs:boolean"/>

 <xs:element name="ObjectName" type="xs:string"/>

 <xs:element name="ObjectId" type="xs:string"/>

 <xs:element name="Write" type="WriteEnum"/>

 <xs:element name="OlapInfo" type="xs:boolean"/>

 <xs:element name="Collations" type="SdfBackupLogCollationsType"/>

 <xs:element name="Languages" type="SdfBackupLogLanguagesType"/>

 <xs:element name="FileGroups" type="SdfFileGroupsType"/>

 </xs:sequence>

</xs:complexType>

BackupRestoreSyncVersion: A value that MUST be set to 1153.

ServerRoot: The root folder in the originating file system from which the files in the Spreadsheet
Data Model were copied.

SvrEncryptPwdFlag: A Boolean value that specifies whether the originating source application
supports password encryption. The value MUST be set to true.

ServerEnableBinaryXML: A Boolean value that specifies whether the originating source application
supports XML metadata in the Spreadsheet Data Model file in binary XML. The value MUST be set to
false.

ServerEnableCompression: A value that MUST be set to false.

CompressionFlag: A value that MUST be set to false.

EncryptionFlag: A value that MUST be set to false.

ObjectName: The database name.

ObjectId: The OLAP database identifier value. Pr
el
im

in
ar

y

20 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Write: An enumeration value that specifies the type of access allowed.

OlapInfo: A Boolean value that specifies whether the files came from a data model that is based on

OLAP. The value MUST be one of the values that are described in the following table.

Value Meaning

true The data files came from a data model that is based on OLAP.

false The data files came from either a tabular data model or a model that is stored on a server as
specified in [MS-SPBEPO2] or [MS-SPFEPO2].

Collations: The name of the collation. The value MAY<1> be restricted to a string that is
recognized as valid by the system.

Languages: The language.

FileGroups: The file groups that are contained in the Spreadsheet Data Model file.

2.1.2.3.1.1 SdfBackupLogCollationsType

The SdfBackupLogCollationsType complex type specifies a collection of collations that are used
by the files included in this structure.

<xs:complexType name="SdfBackupLogCollationsType">

 <xs:sequence>

 <xs:element name="Collation" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

Collation: The name of the collation. The value MAY<2> be restricted to a string that is recognized

as valid by the system.

2.1.2.3.1.2 SdfBackupLogLanguagesType

The SdfBackupLogLanguagesType complex type specifies a collection of languages that are used
by the files included in the Spreadsheet Data Model structure.

<xs:complexType name="SdfBackupLogLanguagesType">

 <xs:sequence>

 <xs:element name="Language" type="xs:int" maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

Language: The language code identifier (LCID) for the backup log.

2.1.2.3.1.3 SdfFileGroupsType

The SdfFileGroupsType complex type specifies the list of files, first as a group and then

individually.

<xs:complexType name="SdfFileGroupsType">

 <xs:sequence>

 <xs:element name="FileGroup" type="SdfFileGroupType" Pr
el
im

in
ar

y

%5bMS-SPBEPO2%5d.pdf
%5bMS-SPFEPO2%5d.pdf
%5bMS-GLOS%5d.pdf

21 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

FileGroup: A group of files with common, specified properties, followed by the list of files in the
group and their individual properties.

2.1.2.3.1.3.1 SdfFileGroupType

The SdfFileGroupType complex type specifies the properties of a group of files as well as the files
and the properties for the member files in that group.

<xs:complexType name="SdfFileGroupType">

 <xs:sequence>

 <xs:element name="Class" type="xs:int"/>

 <xs:element name="ID" type="xs:string"/>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="ObjectVersion" type="xs:int"/>

 <xs:element name="PersistLocation" type="xs:int"/>

 <xs:element name="PersistLocationPath" type="xs:string"/>

 <xs:element name="StorageLocationPath" type="xs:string"/>

 <xs:element name="ObjectID">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value=

 "[0-9A-F]{8}-[0-9A-F]{4}-[0-9A-F]{4}-[0-9A-F]{4}-[0-9A-F]{12}" />

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="FileList" type="SdfFileListType"/>

 </xs:sequence>

</xs:complexType>

Class: The OLAP object that the group of files belongs to.

ID: The identifier of the OLAP object.

Name: The name of the object.

ObjectVersion: An internal version number that is assigned by the system to each version of this
object. This version number does not have to match the version number of other objects in the

same model. The value MUST be the same as that of the ObjectVersion property in the
corresponding OLAP metadata objects’ file. For information about the OLAP objects, each of which
contains an ObjectVersion property, see section 2.6.

PersistLocation: The version number that will appear within the file name. For example, if the
value is "10" for a dimension object, the file name will end in "10.dim.xml". This value MUST match
that of the PersistLocation element of the OLAP database object, which is of type

DatabaseTabularModel (see section 2.6.4).

PersistLocationPath: The folder in which the files of this file group are stored. This value MUST
match that of the DbStorageLocation element of the OLAP database object, which is of type
DatabaseTabularModel (section 2.6.4).

StorageLocationPath: A value that is unused and MUST be ignored. Pr
el
im

in
ar

y

22 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

ObjectID: The identifier of this object. This value matches that of the ObjectID property of the
OLAP object.

FileList: The list of the files that are members of the group and the properties of those files.

2.1.2.3.1.3.1.1 SdfFileGroupClassEnum

The SdfFileGroupClassEnum simple type specifies the enumeration values for the Class element
of the file group.

<xs:simpleType name="SdfFileGroupClassEnum">

 <xs:restriction base="xs:int">

 <xs:minInclusive value="100002"/>

 <xs:maxInclusive value="100060"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the SdfFileGroupClassEnum type.

Enumeration value Description

100002 Database

100003 Data source

100006 Dimension

100010 Cube

100016 Measure group

100021 Partition

100053 Data source view

100060 Multidimensional expression (MDX) script

2.1.2.3.1.3.2 SdfFileListType

The SdfFileListType complex type specifies the list of files that are in a file group as well as the
properties of those files.

<xs:complexType name="SdfFileListType">

 <xs:sequence>

 <xs:element name="BackupFile" type="SdFileListBackupFileType"

 maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

BackupFile: A complex type that specifies a file that is included in the Spreadsheet Data Model file.

2.1.2.3.1.3.3 SdfFileListBackupFileType

The SdfFileListBackupFileType complex type specifies the properties of a file that is included in

the Spreadsheet Data Model file. Pr
el
im

in
ar

y

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

23 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

<xs:complexType name="SdFileListBackupFileType">

 <xs:sequence>

 <xs:element name="Path" type="xs:string"/>

 <xs:element name="StoragePath" type="xs:string"/>

 <xs:element name="LastWriteTime" type="xs:long"/>

 <xs:element name="Size" type="xs:int"/>

 </xs:sequence>

</xs:complexType>

Path: The path of the file in the original source file system.

StoragePath: The storage path of the file in this spreadsheet data file. This value is the key that is
used to match information with information in the virtual directory. This value matches the value of
the Path element for the same file in the virtual directory.

LastWriteTime: The time that the file was last written. The value is the number of nanoseconds
that have elapsed since midnight on January 1, 1601.

Size: The actual size, in bytes, of this file within the storage. The value does not include the end-of-

file marker, or CRC marker, if one is used.

2.1.2.3.1.4 WriteEnum

The WriteEnum simple type enumerates the allowed values for the name of the Write element in
the BackupLogType type. The values specify the types of enabled access.

<xs:simpleType name="WriteEnum">

 <xs:restriction base="xs:string">

 <xs:enumeration value="ReadWrite"/>

 <xs:enumeration value="ReadOnly"/>

 <xs:enumeration value="ReadOnlyExclusive"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the WriteEnum type.

Enumeration

value Description

"ReadWrite" Read-write access.

"ReadOnly" Read-only access.

"ReadOnlyExclusive" Read-only exclusive access. This enumeration value is in a different namespace–
specifically, http://schemas.microsoft.com/analysisservices/2010/engine/200/200.
When the element value is set to this enumeration value, the value of the valuens
attribute ([MS-SSAS] section 2.2.4.2.1.3) on the element MUST be set to the
namespace value.

2.1.2.4 CryptKey.bin File

The CryptKey.bin file contains a cryptographic key. The key is used to encrypt and decrypt the
connection strings and password data that are found in the data source tabular model file (section
2.6.2), which is inside the Spreadsheet Data Model file (section 2.1). The CryptKey.bin file that is Pr

el
im

in
ar

y

http://schemas.microsoft.com/analysisservices/2010/engine/200/200
%5bMS-SSAS%5d.pdf

24 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

stored in the Spreadsheet Data Model file is not the same as the CryptKey.bin file that is
independently present on disk (if present at all).

The key inside the CryptKey.bin file is in its original form, even though it is also in the format of a
key binary large object (BLOB) (section 2.1.2.4.1.1.2) of BLOB type SIMPLEBLOB (section

2.1.2.4.1.1.2.1). However, a session key (SIMPLEBLOB type) requires two keys to create a key
BLOB. To leave the key BLOB in its original form, this situation is handled by using an exponent-of-
one private key (section 2.1.2.4.2).

The CryptKey.bin file is composed of a CryptKeyHeader structure (section 2.1.2.4.1.1.1), the key
BLOB itself (section 2.1.2.4.1.1.2), and a CryptKeyTrailer structure (section 2.1.2.4.1.1.3).

2.1.2.4.1 CryptKey.bin File Format

The CryptKey.bin file format consists of a CryptKeyHeader structure (section 2.1.2.4.1.1.1)
followed by the key BLOB (section 2.1.2.4.1.1.2), which is a key data area containing a BYTE array
that always contains a PUBLICKEYSTRUC BLOB header (section 2.1.2.4.1.1.2.1) and the original
key as well as other information as specified by the type of key BLOB. The proper key BLOB can be

generated by using an exponent-of-one key and the original key (see section 2.1.2.4.2). This is
finally followed by a CryptKeyTrailer structure (section 2.1.2.4.1.1.3). These structures MUST be

in this order and have no breaks between the areas or structures.

The file format MUST begin with the CryptKeyHeader structure, with no bytes preceding the
structure. Likewise, no bytes can follow the CryptKeyTrailer structure in the file. No padding of any
kind exists in the file, except for one case. Padding could exists between the key BLOB data and the
beginning of the CryptKeyTrailer header. The m_dwKeyDataSize member of the
CryptKeyHeader file MUST accurately account for this possible padding used by the key BLOB.

2.1.2.4.1.1 CryptKey.bin Structures

This section specifies the structures that are required by the CryptKey.bin file format.

2.1.2.4.1.1.1 CryptKeyHeader

The CryptKeyHeader structure stores configuration information for the CryptKey.bin file.

struct CryptKeyHeader

{

 GUID m_Magic;

 DWORD m_dwVersion;

 DWORD m_dwHeaderSize;

 DWORD m_dwKeyDataSize;

 DWORD m_dwTrailerSize;

 DWORD m_dwProvider;

 DWORD m_dwAlgorithm;

 DWORD m_dwFlags;

};

m_Magic: A GUID that identifies the CryptKey.bin file as a valid file. This value MUST be set to the

value in the following table.

Name Value

CryptKey Magic
GUID

{0x5d21bc98, 0x8d2d, 0x4ee6, {0xa8, 0xe5, 0xd0, 0x38, 0xaa, 0xc9, 0x44,
0x41}} Pr
el
im

in
ar

y

%5bMS-OFCGLOS%5d.pdf
%5bMS-GLOS%5d.pdf

25 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Name Value

This value will resolve to the following GUID:

5d21bc98-8d2d-4ee6-a8e5-d038aac94441

m_dwVersion: The encryption key version. The value MUST be set to 0x00000004.

m_dwHeaderSize: The size, in bytes, of the CryptKeyHeader structure. The value MUST be set

to 44 (hexadecimal 0x0000002C).

m_dwKeyDataSize: The size of the key BLOB, including the PUBLICKEYSTRUC structure as well
as the key and any other required values.

m_dwTrailerSize: The size, in bytes, of the CryptKeyTrailer structure. The value MUST be set to
16 (hexadecimal 0x00000010).

m_dwProvider: The cryptographic provider that is used. Typically, the value is set to 0x00000001.
The value MUST be set to one of the values in the following table.

Name Value

MS_DEF_PROV

"Microsoft Base Cryptographic Provider v1.0"

0x00000000

MS_ENHANCED_PROV

"Microsoft Enhanced Cryptographic Provider v1.0"

0x00000001

m_dwAlgorithm: The cryptographic algorithm that is used. Typically, the value is set to
0x00000007. The value MUST be set to one of the values in the following table.

Name Value

CALG_3DES 0x00000000

CALG_3DES 0x00000001

CALG_3DES 0x00000002

CALG_3DES 0x00000003

CALG_3DES 0x00000004

CALG_RC2 0x00000005

CALG_3DES_112 0x00000006

CALG_3DES 0x00000007

m_dwFlags: This value is unused and MUST be set to –1 (hexadecimal 0xFFFFFFFF).

2.1.2.4.1.1.2 Key BLOB

The key BLOB is composed of a BYTE array that contains a PUBLICKEYSTRUC BLOB header
(section 2.1.2.4.1.1.2.1) as well as the encrypted key for the CryptKey.bin file. There also might be
other elements of the key BLOB beyond the PUBLICKEYSTRUC and the encrypted key. Those
elements depend on the type of BLOB. Pr

el
im

in
ar

y

26 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The key BLOB is correctly generated by using the CryptExportKey function ([MSDN-CRYPTO]) with
the key to be exported, an exponent-of-one private key as the public key, the dwFlags parameter

set to zero, and the dwBlobType parameter set to SIMPLEBLOB. For more information about
generating this key BLOB by using an exponent-of-one private key, see section 2.1.2.4.2.

2.1.2.4.1.1.2.1 PUBLICKEYSTRUC

The PUBLICKEYSTRUC structure, also known as the BLOBHEADER structure, indicates a key's
BLOB type and the algorithm that the key uses. The information here pertains only to that needed
by the CryptKey.bin file format. For more information about this structure and related information,
see [MSDN-CRYPTO].

typedef struct _PUBLICKEYSTRUC

{

 BYTE bType;

 BYTE bVersion;

 WORD reserved;

 ALG_ID aiKeyAlg;

} BLOBHEADER,

PUBLICKEYSTRUC;

bType: The key BLOB type. The type that is used within CryptKey.bin is SIMPLEBLOB, so this

member MUST be set to SIMPLEBLOB, as described in the following table.

Value Meaning

SIMPLEBLOB

(hexadecimal 0x1)

The key is a session key.

bVersion: The version number of the key BLOB format. The minimum value for this member is

defined by the CUR_BLOB_VERSION identifier (which has a value of 2).

reserved: A member that is reserved and MUST be set to zero.

aiKeyAlg: One of the ALG_ID values that identifies the algorithm of the key contained by the key
BLOB. The choice of algorithm MUST be the same as that specified in the CryptKeyHeader (section
2.1.2.4.1.1.1). However, the values that are used in this member are different than those that are
used in the CryptKeyHeader and are described in the following table.

ALD_ID

identifier Value Description

CALG_3DES 0x00006603 Triple DES encryption algorithm. For more information about
restraints on the use of this type of key, see [MSDN-CRYPTO].

CALG_3DES_112 0x00006609 Two-key triple DES encryption with the effective key length equal to
112 bits.

CALG_RC2 0x00006602 RC2 block encryption algorithm. For more information about when
this key can be used and its provider, see [MSDN-CRYPTO].

For the CryptKey.bin file, this algorithm is limited to an effective key
length of 40 bits. Pr

el
im

in
ar

y

http://go.microsoft.com/fwlink/?LinkId=89984
http://go.microsoft.com/fwlink/?LinkId=89984
http://go.microsoft.com/fwlink/?LinkId=89984
http://go.microsoft.com/fwlink/?LinkId=89984

27 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.1.2.4.1.1.3 CryptKeyTrailer

The CryptKeyTrailer structure stores configuration information for the CryptKey.bin file.

struct CryptKeyTrailer

{

 GUID m_Magic;

};

m_Magic: A GUID that identifies the CryptKey.bin file as a valid file. This value MUST be set to the

value in the following table.

Name Value

CryptKey Magic
GUID

{0x5d21bc98, 0x8d2d, 0x4ee6, {0xa8, 0xe5, 0xd0, 0x38, 0xaa, 0xc9, 0x44,
0x41}}

This value will resolve to the following GUID:

5d21bc98-8d2d-4ee6-a8e5-d038aac94441

2.1.2.4.2 Creating an Exponent-of-One Private Key

As the SIMPLEBLOB type indicates a session key, both a source (private) key and a destination
(public) key are required to create a valid key BLOB for the CryptKey.bin file. In the CryptKey.bin

case, doing so is accomplished by using an exponent-of-one private key. This type of key is also
called a NULL key because although it is accepted by the CryptExportKey function ([MSDN-
CRYPTO]), when it is used in that call as the public key, the resulting encryption and decryption do
nothing to the private key to be exported. Therefore the private key to be exported is left in its
original form.

To create the handle to the exponent-of-one private key, a valid key BLOB of type SIMPLEBLOB is

required. This key BLOB is created such that the exponent of the key BLOB format is modified to an
exponent of one. To obtain the handle of the exponent-of-one private key, the exponent-of-one key

BLOB is used, along with the handle to the provider, in a call to the CryptImportKey function
([MSDN-CRYPTO]), as shown in the following pseudocode:

CALL CryptImportKey with parameters (Handle-To CryptProvider,

 ExponentOfOnePrivateKeyBLOB,

 Size-Of ExponentOfOnePrivateKeyBLOB,

 0,

 0,

 Address-Of handleToExponentOfOnePrivateKey)

The handle to the cryptographic provider is obtained through a call to the CryptAcquireContext

function ([MSDN-CRYPTO]) and MUST use one of the allowed CryptKey.bin providers as the provider
string. Furthermore, the provider type MUST be set to PROV_RSA_FULL.

The providers that are allowed are listed (as strings) in the following table.

Provider String name

"Microsoft Base Cryptographic Provider v1.0" MS_DEF_PROV

"Microsoft Enhanced Cryptographic Provider v1.0" MS_ENHANCED_PROV Pr
el
im

in
ar

y

http://go.microsoft.com/fwlink/?LinkId=89984
http://go.microsoft.com/fwlink/?LinkId=89984
http://go.microsoft.com/fwlink/?LinkId=89984
http://go.microsoft.com/fwlink/?LinkId=89984

28 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The key BLOB that is required by Cryptkey.bin can now be generated by calling CryptExportKey
with the handle to the original key (the private key) to be exported, the handle of the exponent-of-

one private key, the type set to SIMPLEBLOB, the flags value set to zero, a buffer to hold the
returned key BLOB, and the length of the key BLOB. The call then returns the properly formatted

key BLOB in the buffer parameter. The length of the key BLOB can be determined simply by making
the same call to CryptExportKey, but with the buffer parameter (BufferForExportedKeyBLOB) set
to zero.

The following pseudocode illustrates this call to create an exportable key BLOB:

CALL CryptExportKey with parameters (Handle-To KeyToBeExported,

 Handle-To ExponentOfOnePrivateKey,

 SIMPLEBLOB,

 0,

 Pointer-To BufferForExportedKeyBLOB,

 Pointer-To LengthOfExportedKeyBLOB)

This key BLOB, which is contained in BufferForExportedKeyBLOB, is then placed after the

CryptKeyHeader (section 2.1.2.4.1.1.1) and before the CryptKeyTrailer (section 2.1.2.4.1.1.3) in
CryptKey.bin.

The method of creating an exponent-of-one private key BLOB has been documented and is widely

known. For more information, see [MSKB228786].

However, for convenience, the exponent-of-one private key BLOB is provided in the following table.
The handle to this key BLOB is obtained by using CryptImportKey, as specified earlier in this
section.

Name Value

ExponentOfOnePrivateKeyBLOB const BYTE array[] =

{

0x07, 0x02, 0x00, 0x00, 0x00, 0xA4, 0x00, 0x00, 0x52, 0x53, 0x41,
0x32, 0x00, 0x02, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xAB, 0xEF,
0xFA, 0xC6, 0x7D, 0xE8, 0xDE, 0xFB, 0x68, 0x38, 0x09, 0x92, 0xD9,
0x42, 0x7E, 0x6B, 0x89, 0x9E, 0x21, 0xD7, 0x52, 0x1C, 0x99, 0x3C,
0x17, 0x48, 0x4E, 0x3A, 0x44, 0x02, 0xF2, 0xFA, 0x74, 0x57, 0xDA,
0xE4, 0xD3, 0xC0, 0x35, 0x67, 0xFA, 0x6E, 0xDF, 0x78, 0x4C, 0x75,
0x35, 0x1C, 0xA0, 0x74, 0x49, 0xE3, 0x20, 0x13, 0x71, 0x35, 0x65,
0xDF, 0x12, 0x20, 0xF5, 0xF5, 0xF5, 0xC1, 0xED, 0x5C, 0x91, 0x36,
0x75, 0xB0, 0xA9, 0x9C, 0x04, 0xDB, 0x0C, 0x8C, 0xBF, 0x99, 0x75,
0x13, 0x7E, 0x87, 0x80, 0x4B, 0x71, 0x94, 0xB8, 0x00, 0xA0, 0x7D,
0xB7, 0x53, 0xDD, 0x20, 0x63, 0xEE, 0xF7, 0x83, 0x41, 0xFE, 0x16,
0xA7, 0x6E, 0xDF, 0x21, 0x7D, 0x76, 0xC0, 0x85, 0xD5, 0x65, 0x7F,
0x00, 0x23, 0x57, 0x45, 0x52, 0x02, 0x9D, 0xEA, 0x69, 0xAC, 0x1F,
0xFD, 0x3F, 0x8C, 0x4A, 0xD0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x64, 0xD5, 0xAA, 0xB1, 0xA6, 0x03, 0x18, 0x92,
0x03, 0xAA, 0x31, 0x2E, 0x48, 0x4B, 0x65, 0x20, 0x99, 0xCD, 0xC6,
0x0C, 0x15, 0x0C, 0xBF, 0x3E, 0xFF, 0x78, 0x95, 0x67, 0xB1, 0x74,
0x5B, 0x60, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Pr

el
im

in
ar

y

http://go.microsoft.com/fwlink/?LinkId=230875

29 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Name Value

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};

2.1.3 Virtual Directory

Following the streamed-in files section (section 2.1.2) and any padding from that section to the
Spreadsheet Data Model file page boundary (section 2.1), is the Spreadsheet Data Model virtual
directory. The virtual directory lists all the files that are included in the instance of the Spreadsheet
Data Model, except for the virtual directory itself.

No byte order mark (section 2.1.1.1) precedes the virtual directory. However, the virtual directory
MUST be followed by padding with zeros to end of the page boundary, which is also the end of the
Spreadsheet Data Model file.

The virtual directory is an XML document. The document node is the VirtualDirectory element.

2.1.3.1 VirtualDirectoryType

The VirtualDirectoryType complex type is the type of the VirtualDirectory element document
node in the virtual directory section of the Spreadsheet Data Model file. VirtualDirectoryType
contains the list of files.

<xs:complexType name="VirtualDirectoryType">

 <xs:sequence>

 <xs:element name="BackupFile" type="VirtualDirectoryBackupFileType"

 maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

BackupFile: A complex type containing the information about each file that is included in the
Spreadsheet Data Model.

2.1.3.2 VirtualDirectoryBackupFileType

The VirtualDirectoryBackupFileType complex type contains properties for each file that is
included in the Spreadsheet Data Model instance.

<xs:complexType name="VirtualDirectoryBackupFileType">

 <xs:sequence>

 <xs:element name="Path" type="xs:string"/>

 <xs:element name="Size" type="xs:unsignedLong"/>

 <xs:element name="m_cbOffsetHeader" type="xs:unsignedLong"/>

 <xs:element name="Delete" type="xs:boolean"/>

 <xs:element name="CreatedTimestamp" type="xs:long"/>

 <xs:element name="Access" type="xs:long"/>

 <xs:element name="LastWriteTime" type="xs:long"/>

 </xs:sequence>

</xs:complexType> Pr
el
im

in
ar

y

30 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Path: The path of the file within the virtual directory. The value is used as a key to match the file to

the backup log, which contains an identical entry for the storage path of a file in the backup log.

Size: The actual size, in bytes, of this file within the storage. The size includes the end-of-file
marker, the CRC marker, if one is used.

m_cbOffsetHeader: The offset, in bytes, within the storage to the file. The value includes the
header.

Delete: A value that is unused and MUST be ignored.

CreatedTimestamp: The time that the file was created. The value is the number of nanoseconds
that have elapsed since midnight on January 1, 1601.

Access: The time that the file was accessed. The value is the number of nanoseconds that have
elapsed since midnight on January 1, 1601.

LastWriteTime: The time that the file was last written. The value is the number of nanoseconds
that have elapsed since midnight on January 1, 1601.

2.2 File Name Generation

The metadata and data for each Spreadsheet Data Model is represented by a group of files that are
automatically generated by the system and that are stored hierarchically in folders. The substrings

within the generated names for the files have meaning. The method for the generation of the file
names, by concatenation of the substrings that represent various properties of the file, is described
in this section. The requirements for which files and folders are mandatory, and under what
circumstances, are also described in this section. The file names are defined by using Augmented
Backus-Naur Form (ABNF) notation, as specified in [RFC5234].

2.2.1 Top-Level Folder

The root folder for the stored files is the database folder.

The database folder name is generated as specified by the following ABNF rules:

Integer = *%x30-39

Char = %x41-5A / %x61-7A / %x30-39 / %x23-2E / "!" / "=" / "@" / "[" / "]" /

 "^" / "{" / "}" / "~"

UserID = *Char

DatabaseFolderName = UserID ".0" ".db"

UserID is an identifier that is assigned by the user to an object. The characters in UserID MAY<3>

be normalized.

The database folder contains all of the remaining folders and files that are specified in the structure.

2.2.2 Top-Level Folders

The database folder contains the files and folders that are specified in the following subsections.

2.2.2.1 Cube Folder

Every tabular data model MUST have a cube folder. The cube folder name is generated as specified
by the following ABNF rule: Pr

el
im

in
ar

y

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113442

31 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

CubeFolderName = UserID ".0.cub"

2.2.2.1.1 Cube Folder Folders

The cube folder MUST contain a measure group folder for each table that participates in the cube.

2.2.2.1.1.1 Measure Group Folder

Every cube folder MUST contain at least one measure group folder.

The measure group folder name is generated as specified by the following ABNF rules:

TableID = UserID

MeasureGroupFolderName = TableID "." Integer "." "det"

2.2.2.1.1.1.1 Measure Group Folder Folders

Each measure group folder MUST contain a partition folder.

The partition folder name is generated as specified by the following ABNF rule:

PartitionFolderName = TableID "." Integer "." "prt"

2.2.2.1.1.1.1.1 Partition Folder Files

A partition information file MUST be generated in every partition folder.

The partition information file name is generated as specified by the following ABNF rule:

PartitionInfoFileName ::= "info" "." Integer "." "xml"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same
model.

The content of the partition information file is specified in section 2.6.10.1.

2.2.2.1.1.1.2 Measure Group Folder Files

A partition metadata file MUST be generated in every measure group folder.

The partition metadata file name is generated as specified by the following ABNF rule:

PartitionFileName = TableID "." Integer "." "prt" "." "xml"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same
model.

The content of the partition metadata file is specified in section 2.6.8. Pr
el
im

in
ar

y

32 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.2.2.1.2 Cube Folder Files

The following subsections specify name generation for the files that are contained in the cube folder.

2.2.2.1.2.1 Cube Information File

A cube information file MUST be generated in every cube folder.

The cube information file name is generated as specified by the following ABNF rule:

CubeInfoFileName = "info" "." Integer "." "xml"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same
model.

The content of cube information file is specified in section 2.6.10.3.

2.2.2.1.2.2 MDX Script Metadata File

A multidimensional expression (MDX) script metadata file MUST be generated in the cube folder.

The MDX script metadata file name is generated as specified by the following ABNF rule:

MdxScriptFileName = "MdxScript" "." "0" "." "scr" "." "xml"

Integer is an internal version number that is assigned by the system to each version of this object.
This version number does not have to match the version number of other objects in the same

model.

The content of the MDX script metadata file is specified in section 2.6.9.

2.2.2.1.2.3 Measure Group Metadata File

A measure group metadata file MUST be generated in the cube folder.

The measure group metadata file name is generated as specified by the following ABNF rule:

MeasureGroupFileName = TableID "." "0" "." "det" "." "xml"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same
model.

The content of the measure group metadata file is specified in section 2.6.7.

2.2.2.2 Data Source Folder

Each model MAY<4> contain a data source folder.

The data source folder name is generated as specified by the following ABNF rules:

DataSourceID = UserID Pr
el
im

in
ar

y

33 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

DataSourceFolderName = DataSourceID "." "0" "." "ds"

2.2.2.3 Dimension Folder

A model MUST contain one or more dimension folders. A model MUST have one dimension folder per
table in the model instance.

The dimension folder name is generated as specified by the following ABNF rule:

DimensionFolderName = TableID "." "0" "." "dim"

TableID is the name assigned by the user to a table in an instance of the power pivot model.

2.2.2.3.1 Metadata Files

The following subsections specify file name generation for metadata files that are contained in the

dimension folder.

2.2.2.3.1.1 Table Metadata Files

A table metadata file MUST be generated for each table that is part of the model.

The table metadata file name is generated as specified by the following ABNF rule:

TableMetadataFileName = TableID "." Integer "." "tbl" "." "xml"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same
model.

The content of the table metadata file is specified in section 2.5.3.

2.2.2.3.1.2 Table Information File

A table information file MUST be generated for each table that is part of the model.

The table information file name is generated as specified by the following ABNF rule:

TableInfoFileName = "info" "." Integer "." "xml"

Integer is an internal version number that is assigned by the system to each version of this object.
This version number does not have to match the version number of other objects in the same

model.

The content of the table information file is specified in section 2.6.10.

2.2.2.3.1.3 Table Relationship File

If a table has a defined relationship, a table relationship file MUST be generated.

The table relationship file name is generated as specified by the following ABNF rule: Pr
el
im

in
ar

y

34 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

TableRelationshipFileName = "R$" TableID "." Integer "." "tbl" "." "xml"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same
model.

The content of the table relationship file is described in section 2.5.2.

2.2.2.3.1.4 Column Hierarchy Files

A column hierarchy file MUST be generated for each column in a table.

The column hierarchy file name is generated as specified by the following ABNF rules:

ColID = UserID

ColHierFileName = "H$" TableID "$" ColID "." Integer "." "tbl" "." "xml"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same
model. TableIDUName is the name assigned by a user to a column of a table in an instance of the

power pivot model.

The content of the column hierarchy file is specified in section 2.5.1.

2.2.2.3.1.5 User Hierarchy Metadata File

If a table has a user-defined hierarchy, a user hierarchy metadata file MUST be generated.

The user hierarchy metadata file name is generated as specified by the following ABNF rules:

HierID = UserID

UserHierFileName = "U$" TableID "$" HierID "." Integer "." "tbl" "." "xml"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same
model.

The content of the user hierarchy metadata file is described in section 2.5.2.

2.2.2.3.2 Data Files

The following subsections specify file name generation for data files that are contained in the
dimension folder.

2.2.2.3.2.1 Column Data Files

A data file MUST be generated for each column in a table.

The column data file name is generated as specified by the following ABNF rule:

ColDataFileName = Integer "." TableID "." ColID "." "0" "." "idf" Pr
el
im

in
ar

y

35 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same

model.

The content of the column data file is specified in section 2.3.1.

2.2.2.3.2.2 Table Relationship Index File

A table relationship index file MUST be generated for a table if it has a defined relationship to
another table in the model.

The table relationship index file name is generated as specified by the following ABNF rule:

TableRelationshipFileName = Integer "." "R$" TableID "." "INDEX" "." "0" "." "idf"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same

model.

The content of the table relationship index file is specified in section 2.4.

2.2.2.3.2.3 Column Hierarchy Position–to–Identifier File

A column hierarchy position–to–identifier file MUST be generated for each column in a table.

The column hierarchy position–to–identifier file name is generated as specified by the following
ABNF rules:

ColHierPosToIDFileName = Integer "." "H$" TableName "$" ColName "." "POS_TO_ID" "." "0" "."

"idf"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same

model.

The content of the column hierarchy position–to–identifier file is specified in section 2.3.4.

2.2.2.3.2.4 Column Hierarchy Identifier–to–Position File

A column hierarchy identifier–to–position file MUST be generated for a column if a dictionary file is
also generated. To determine when the metadata indicates that a dictionary has been generated,
see section 2.5.

The column hierarchy identifier–to–position file name is generated as specified by the following
ABNF rule:

ColHierIDToPosFileName = Integer "." "H$" TableID "$" ColID "." "ID_TO_POS" "." "0" "." "idf"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same
model.

The content of the column hierarchy identifier–to–position file is specified in section 2.1.3.5. Pr
el
im

in
ar

y

36 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.2.2.3.2.5 Column Hierarchy Hash Table

A column hierarchy hash table file can be generated for a column, depending on the data that is
contained in the column. A column hierarchy hash table file MUST be generated if the metadata

indicates that a hash data dictionary is used (see sections 2.5.2.20, 2.5.2.21, and 2.5.2.22).

The column hierarchy hash table file name is generated as specified by the following ABNF rule:

ColHierHashTableFileName = Integer "." "H$" TableID "$" ColID "." "hidx"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same
model.

The content of the column hierarchy hash table file is specified in section 2.3.3.

2.2.2.3.2.6 Column Hierarchy Dictionary

A column hierarchy dictionary file can be generated for a column, depending on the data that is
contained in the column. A column hierarchy dictionary file MUST be generated if the metadata

indicates that a value data dictionary is used (see sections 2.5.2.18 and 2.5.2.19).

The column hierarchy dictionary file name is generated as specified by the following ABNF rule:

ColHierDictionaryFileName = Integer "." TableID "." ColID "." "dictionary"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same
model.

The content of the column hierarchy dictionary file is specified in section 2.3.2.

2.2.2.3.2.7 User Hierarchy Files

User-defined hierarchies comprise an optional feature that can be defined for a table.

2.2.2.3.2.7.1 Child Count File

A user hierarchy child count file MUST be generated if a user-defined hierarchy is present.

The user hierarchy child count file name is generated as specified by the following ABNF rule:

UserHierChildCountFileName = Integer "." "U$" TableID "$" HierID "." "CHILD_COUNT" "." "0"

"." "idf"

A column hierarchy dictionary file can be generated for a column, depending on the data that is

contained in the column. A column hierarchy dictionary file MUST be generated if the metadata

indicates that a value data dictionary is used (see sections 2.5.2.18 and 2.5.2.19).

The column hierarchy dictionary file name is generated as specified by the following ABNF rule:

ColHierDictionaryFileName = Integer "." TableID "." ColID "." "dictionary" Pr
el
im

in
ar

y

37 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same

model.

The content of the user hierarchy child count file is specified in section 2.4.4.1.

2.2.2.3.2.7.2 First Child Position File

A user hierarchy first child position file MUST be generated if a user-defined hierarchy is present.

The user hierarchy first child position file name is generated as specified by the following ABNF rule:

UserHierFirstChildPosFileName = Integer "." "U$" TableID "$" HierID "." "FIRST_CHILD_POS" "."

"0" "." "idf"

Integer is an internal version number that is assigned by the system to each version of this object.
This version number does not have to match the version number of other objects in the same

model.

The content of the user hierarchy first child position file is specified in section 2.4.4.2.

2.2.2.3.2.7.3 Parent Position File

A user hierarchy parent position file MUST be generated if is a user-defined hierarchy is present.

The user hierarchy parent position file name is generated as specified by the following ABNF rule:

UserHierParentPosFileName = Integer "." "U$" TableID "$" HierID "." "PARENT_POS" "." "0" "."

"idf"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same

model.

The content of the user hierarchy parent position file is specified in section 2.4.4.4.

2.2.2.3.2.7.4 Multilevel Identifier File

A user hierarchy multilevel identifier file MUST be generated if a user-defined hierarchy is present.

The user hierarchy multilevel identifier file name is generated as specified by the following ABNF

rule:

UserHierMultiLevelIdFileName = Integer "." "U$" TableID "$" HierID "." "MULTI_LEVEL_ID" "."

"0" "." "idf"

Integer is an internal version number that is assigned by the system to each version of this object.

This version number does not have to match the version number of other objects in the same
model.

The content of the user hierarchy multilevel identifier file is specified in section 2.4.4.3. Pr
el
im

in
ar

y

38 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.3 Storage of Data Values

Data is stored in the system by column. Each table is separated into its constituent columns, and a
separate set of files is generated to represent the data in each column. Every unique row value in a

column is assigned a data identifier. The data identifier values comprise a contiguous range of
integers, which can start at any value. Data identifiers are represented as signed 32-bit integers
and, as such, are limited to that addressable range.

The data in each column is evaluated heuristically and is either hash encoded or value encoded.
String data is always hash encoded. Nonstring data can be either hash encoded or value encoded.
Except for the hash dictionary and the value dictionary, all data is represented by data identifier and
not by value.

All the column data storage files are stored with compression. Other files might or might not use
compression. Different compression methods are used, depending on the file’s data. Different file
types, or even different files of the same type, have different requirements regarding which
compression formats are allowed. For more information about the types of compression that are
available for use, see section 2.7.

All the file formats use little-endian format.

The file format layouts are platform independent. A file that is written on one supported platform—
for example, a 32-bit machine, is readable on a different, supported platform, such as a 64-bit
machine, and vice versa.

Each column has an associated file that describes the metadata for the column. The file format for
column metadata storage is clear text XML. It is necessary to reference the XML metadata file to
understand and decode the contents of the data files for the column. The identification of the proper
XML file to use to decode a column data file is explained in section 2.2. The content of the column

metadata XML file is explained in section 2.7.

2.3.1 Column Data Storage

A column data storage file for each column in the source data table MUST be present. A separate file

is used to store the column data for each column. An example of a generated file name for a column
data storage file for a table that has the identifier "Table1" and a column that has the identifier "Cat"
is 4.Table1.Cat.0.idf. For an explanation of the interpretation of the substrings within the file name,

see section 2.2.

The system represents each unique data value in a column by an assigned data identifier for that
unique value. In the tabular data model file format, the data identifier is always stored, but the data
value is not stored. To decode the data identifiers into their actual values, the data dictionary
(section 2.3.2) or value hash index (section 2.3.3) is used. The system MAY<5> use any method for
assigning data identifiers to values.

The column data file contains an array of the data identifier values that represent the values
contained in each row of the column in the source data. In this file, one data identifier is
represented per row in the source data column. The order in which the data identifiers appear can
vary from the order in which they appear in the rows of the source data table. Partial sorting of
values MAY<6> be performed to optimize compression.

The column data storage file is compressed by one of several methods, although it is always
compressed by using a XMHybridRLE compression method (except for the special case of the

RowNumber column, which uses XM123 compression as part of a hybrid). For a discussion of the
types of compression that are available to be used, see section 2.7. Pr

el
im

in
ar

y

%5bMS-GLOS%5d.pdf

39 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

It is necessary to reference the XML metadata file to understand and decode the contents of the
column data storage file. An example of a file name for the file that contains the metadata for the

data storage file for a table that has the identifier "Table1" is Table1.1.tbl.xml. The metadata file
contains the metadata for all the columns of the table. For example, the metadata for the column

"Cat" in table "Table1" is found in the Columns collection of the XMSimpleTable object in the
metadata file. In the Columns collection, a Column item exists for every column in the table. The
Column item in the Column collection for which the value of the name attribute is "Cat" contains
the metadata for the "Cat" column. For an explanation of how to interpret the metadata file, see
section 2.5.

2.3.1.1 File Layout for Column Data Storage Files

All files with the .idf file name extension have the same file format layout. The meaning of the
contents of the file depends on the type of file—for example, for a column data storage file, see
section 2.3.1.

An .idf file is always compressed. The type of compression can vary. The compression can be
XMHybridRLE compression (see section 2.7.3), XMRENoSplit compression (see section 2.7.1), or

hybrid compression that uses XM123 compression if the file is a RowNumber column (see section

2.7.2 and section 2.7.3.16). An .idf file is also divided into segments. Each segment contains a
contiguous slice of rows for the specific column. An .idf file always contains at least one segment
and possibly more. Segments are not identical. They can vary in both size (that is, the number of
rows in the segment) and the compression method that is used to compress the data in the
segment. The XML metadata for each segment specifies the compression method that is used (see
section 2.5).

The first 8 bytes of each segment indicates the segment size in units. Each unit is 8 bytes.

Therefore, the next segment size multiplied by the unit size is the size of that segment when
persisted to disk (in the file). For example, if the first 8 bytes a particular segment is set to 0x02, 2
units exist, which translates into a segment size of 16 bytes. Following the first 8 bytes are 16 more
bytes that contain the actual segment data. The first 8 bytes of a segment are not included in the
overall segment size value that it holds. It is possible for a segment to be zero in size. In that case,
the initial 8 bytes indicates this fact—that is, the 8 bytes are set to zero to indicate a segment size

of zero. For an example of the general layout of an .idf file, see section 2.3.1.1.1.

The segment size MUST accurately indicate the size of that segment in the .idf file; otherwise, a file
validation error could occur. In particular, segments that use XMHybridRLE compression depend on
the segment size to be accurate, and if it is not, data errors that occur when reading the file could
cause data corruption or failure errors later.

The segment size refers to the size of the compressed segment when it is persisted to disk. This size
differs from the size that a segment can be in memory. Because these in-memory segment sizes

matter, they will be discussed here, as well.

The size of an in-memory segment can vary, and its size is measured in rows. All in-memory
segments that belong to the same column MUST be of equal size. Additionally, all in-memory
segments have a minimum size and a maximum size that are measured in rows. All in-memory
segments MUST also have a row count that is a power of two.

Two exceptions to these rules exist. First, the last segment does not have to comply with these
restrictions. Second, segments that are compressed with a hybrid compression MUST treat both the

primary segment and the subsegments as one unit, and the unit as a whole MUST meet these
restrictions (except for the last primary segment and subsegment in that series of hybrid
compressed segments). For more information about the segment size restrictions, including the
exact values for the minimum and maximum rows that are required, see section 2.3.1.1.3. Pr

el
im

in
ar

y

40 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Regarding the column data storage file type, a column data storage .idf file is always compressed by
using XMHybridRLE compression. Therefore, a column data storage file has a minimum of two

segments. The first segment (the primary segment) is for the RLE part of the compression, and the
second segment (the subsegment) is for the XMRENoSplit bit packing part of the compression.

However, the layout of the primary segment does not include any size information regarding its
subsegment. The subsegment, like its primary segment, follows the basic layout of all segments.
This fact means that the first 8 bytes of the subsegment contains the size of the subsegment, just
as the first 8 bytes of the primary segment contains only the size information for the primary
segment (and thus excludes any size information for the subsegment). For an example of the
general layout of an .idf file that uses hybrid compression, see section 2.3.1.1.2. For more
information about the hybrid compression of segments, see section 2.7.3.

Any unused trailing bytes within a segment are padded with zeros, but this padding is handled
within the compression process. Extra padding with zeros could also exist at the end of the file, and
this padding is not accounted for in any segment size value. However, unaccounted-for padding
between segments cannot exist. The end-of-file padding is not included in the segment size
calculation and is ignored if present.

2.3.1.1.1 General Layout of an .idf File

The following diagram shows the general layout of an .idf file. This layout applies to any .idf file.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SegmentSize

...

Segment (variable)

...

SegmentSize

...

Segment (variable)

...

SegmentSize (8 bytes): The size of the segment that immediately follows this field.

Segment (variable): A segment. The size is specified by the value of the preceding
SegmentSize field.

SegmentSize (8 bytes): The size of the segment that immediately follows this field.

Segment (variable): A segment. The size is specified by the value of the preceding

SegmentSize field. Pr
el
im

in
ar

y

41 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.3.1.1.2 General Layout of an .idf File That Uses Hybrid Compression

The following diagram provides an example layout of a column data storage .idf file that has two
primary segments and two subsegments.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SegmentSize

...

Segment (variable)

...

SegmentSize

...

SubSegment (variable)

...

SegmentSize

...

Segment (variable)

...

SegmentSize

...

SubSegment (variable)

...

SegmentSize (8 bytes): The size of the primary segment that immediately follows this field.

Segment (variable): A primary segment. The size is specified by the value of the preceding

SegmentSize field.

SegmentSize (8 bytes): The size of the subsegment that immediately follows this field.

SubSegment (variable): A subsegment that is associated with preceding primary segment. The
size is specified by the value of the preceding SegmentSize field. Pr
el
im

in
ar

y

42 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

SegmentSize (8 bytes): The size of the primary segment that immediately follows this field.

Segment (variable): A primary segment. The size is specified by the value of the preceding

SegmentSize field.

SegmentSize (8 bytes): The size of the subsegment that immediately follows this field.

SubSegment (variable): A subsegment that is associated with preceding primary segment. The
size is specified by the value of the preceding SegmentSize field.

2.3.1.1.3 Segment Size Limitations for .idf Files

Segments in .idf files MUST follow certain size rules. First, all in-memory segments that belong to
the same column (that is, the same .idf file when persisted to disk) MUST be of equal size. Second,
all in-memory segments have a minimum size of 16,384 rows and a maximum size of 16,777,216

rows. Third, all in-memory segments MUST have a row count that is a power of two.

Only two exceptions to these segment size requirements exist.

First, the last segment of a partition does not need to be within the range of the minimum and
maximum row counts, nor does it need to have a row count that is a power of two. The last
segment can even be of zero size (the case of the last segment as an empty segment).

Second, when using hybrid compression, both a primary segment and a subsegment that is

associated with the primary segment exist. These two segments MUST be considered one unit when
applying these rules because the two segments represent data from the same column.

The case of the last segment as an empty segment can occur when an empty table (that is, a table
with no rows) exists. The reason is that every column belonging to that table MUST have at least
one segment, and every column is required to have a column data storage file (.idf file). Therefore,
the first segment is also the last segment and can bypass the restrictions, and therefore be zero
(empty). In other words, because the two segments are treated as one unit, both the primary (RLE)

segment and the subsegment (bit packing subsegment) are zero (empty).

Note again that this limitation for segments is measured in rows, not in 8-byte units. The reason is
that the size of a row is variable, because the particular column might be a column of floating point
values, integers, strings, or BLOBs. However, if these row count requirements are adhered to, the
compressed segments (which are persisted to the Spreadsheet Data Model file as streamed-in .idf
files) will be correct and will not generate any errors or undefined behavior when the file is read.

2.3.2 Column Data Dictionary

Column data can have an associated data dictionary file generated. An example of a generated file
name for a dictionary file for a table that has the identifier "Table1" and a column that has the
identifier "Label" is 4.Table1.Label.0.dictionary. For an explanation of the interpretation of the
substrings within the file name, see section 2.2.

The data dictionary contains information that is used to decode the value in the source data that a

data identifier represents. The data dictionary file contains an array of unique values that appear in
the source data. The file is ordered by data identifier so the first value in the file represents the

lowest data identifier, the second value in the file represents the next-lowest data identifier, and so
on. Dictionaries that contain only integer or floating point data are not compressed. Dictionaries that
contain strings might have parts of the dictionary that are compressed. In the case of dictionaries
that contain strings or BLOBs, although most parts of the dictionary file are not compressed, the
specific strings or BLOBs might be compressed by using a Huffman compression. BLOBs are pre-Pr

el
im

in
ar

y

43 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

encoded by means of base64 encoding and are therefore treated as strings (and stored in a string
dictionary). For a discussion of the type of Huffman compression that is used, see section 2.7.

It is necessary to reference the XML metadata file to determine whether a data dictionary file is
present for a data column. This metadata is contained in the same file as the column data storage

file metadata (see section 2.3.1). If a particular XMRawColumn object—specifically, the
XMRawColumn object of the Column item in the Columns collection that has a name equal to the
column name—has a DataObject in the DataObjects collection for which the value of the class
attribute equals one of the values in the following list, the column MUST have a column data
dictionary file generated.

XMHashDataDictionary<XM_Real> (section 2.5.2.19)

XMHashDataDictionary<XM_Long> (section 2.5.2.18)

XMHashDataDictionary<XM_String> (section 2.5.2.22)

For an explanation of how to interpret the XML metadata file see section 2.5.

2.3.2.1 File Layout for a Column Data Dictionary

The column data dictionary file format layout varies depending on the type of dictionary that is

persisted to the file. Dictionaries can be of type integer, real, or string, the latter of which includes
BLOBs because they are precompressed by means of base64 encoding.

The first element in a dictionary file (that is, a file that has the .dictionary file name extension) is an
enumeration value. Because the size of an enumeration value depends on the compiler, the number
of bytes to be read (or written) is variable. For example, on a 32-bit system or application, a
standard enumeration value is 4 bytes, unless it is specifically declared to use some other integer
value. A standard enumeration value also defaults to 4 bytes on a 64-bit system or application,

unless otherwise specified. The enumeration value used here defaults to 4 bytes.

The XM_TYPE enumeration (section 2.3.2.1.3.1) consists of four values, ranging from –1, which
implies an invalid type, through the integer, real, and string types.

Depending on the dictionary type, the specifics of the file format layout vary. There are two basic
cases: dictionaries of type integer (XM_TYPE_LONG) or real (XM_TYPE_REAL), and dictionaries
of type string (XM_TYPE_STRING). For more information about the former, see section 2.3.2.1.1.

For more information about the latter, see section 2.3.2.1.2.

The following diagram shows this first element (the dictionary type) in a dictionary file. The type is
followed by any hash information (section 2.3.3.1.1), which is then followed by the main part of the
dictionary.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

DictionaryType

HashInformation (variable)

...

Dictionary (variable) Pr
el
im

in
ar

y

%5bMS-OFCGLOS%5d.pdf

44 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

...

DictionaryType (4 bytes): The dictionary type. The value can be XM_TYPE_LONG,
XM_TYPE_REAL, XM_TYPE_STRING, or XM_TYPE_INVALID.

HashInformation (variable): The hash information that is required for all dictionaries. An
XM_TYPE_STRING dictionary has the option of not including any hash information in certain
situations. For more information, see section 2.3.2.1.2.2.

Dictionary (variable): The dictionary store. If the value of DictionaryType is

XM_TYPE_STRING, this store consists of information, pages, and records. If the value of
DictionaryType is XM_TYPE_REAL or XM_TYPE_LONG, this store consists of information
plus numeric items and values.

2.3.2.1.1 XM_TYPE_LONG and XM_TYPE_REAL Data Dictionary Files

For a dictionary of type XM_TYPE_LONG, if the OperatingOn32 element (section 2.5.2.21.1) is

set to true, the dictionary will use 4-byte integers. If this element is set to false, the dictionary will

use 8-byte integers. This change has an effect on how values, potentially including any hash
information, are stored and interpreted in the file.

Note that the sizes of the first required five elements of the hash (see section 2.3.2.1.1.1) are not
affected by this information. The values that are contained by the hash bin and hash entry structure
size elements (that is, two of the five elements) are affected, but the sizes are not.

The values that are contained by each of the required hash elements MUST be correct; otherwise, a
file validation error could occur. For more information about the XM_TYPE_LONG and

XM_TYPE_REAL hash data dictionary XML metadata values, see section 2.5.2.21 and section
2.5.2.20.

The following diagram shows the general layout of an XM_TYPE_REAL or XM_TYPE_LONG
dictionary.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

DictionaryType

HashInformation

...

VectorOfValues

...

DictionaryType (4 bytes): The type of dictionary. The value MUST be XM_TYPE_REAL or
XM_TYPE_LONG.

HashInformation (variable): The required hash elements for dictionary files. Pr
el
im

in
ar

y

45 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

VectorOfValues (variable): The set of real (64-bit) or integer (32-bit or 64-bit, depending on
the range of values that are encountered) values. The values are not compressed.

2.3.2.1.1.1 Required Hash Elements

For integer and real dictionaries, the next five elements are hash elements (see section 2.3.3.1.1).
For all dictionary files, the value of cBins MUST be set to
XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT (section 2.3.3.1.4.1) to indicate that no
further hash information is included.

The underlying system does not use any included hash information, other than the five required
elements, in a dictionary. Therefore, there MUST NOT be any other hash information (other than
those five elements) in a dictionary file, regardless of the type of dictionary.

2.3.2.1.1.2 Vector of Values

For XM_TYPE_LONG or XM_TYPE_REAL dictionaries, what now follows is a vector of either
integer or double values. These values are the actual dictionary items, which are stored in a vector

(or array), and are not compressed.

The number of dictionary items and the individual sizes of the dictionary items are encoded first.

Therefore, at this point in the file, the next 8 bytes represent the number of elements in the vector.
The following 4 bytes represent the size, in bytes, of each element in the vector. Therefore, the
vector itself is of variable size—this size, in bytes, equals the number of elements multiplied by the
element size.

The element size for a XM_TYPE_LONG dictionary also varies depending on whether the operating
system is 32-bit or 64-bit because the element size reflects the size of a 32-bit integer or a 64-bit
integer. For an XM_TYPE_REAL dictionary, the element size is the size of a double value.

The vector of values completes the format of a hash data dictionary of type XM_TYPE_LONG or
XM_TYPE_REAL. Padding with zeros might exist at the end of the file, but such padding is ignored
and not read.

The following diagram shows a general view of the layout of the vector of values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

elementCount

...

elementSize

VectorOfValues (variable)

...

elementCount (8 bytes): The number of elements in the XM_TYPE_REAL or
XM_TYPE_LONG dictionary.

elementSize (4 bytes): The size of each element. Pr
el
im

in
ar

y

46 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

VectorOfValues (variable): The vector of real or integer values in the dictionary.

2.3.2.1.2 XM_TYPE_STRING Data Dictionary Files

The layout for dictionaries of type XM_TYPE_STRING is different than that for dictionaries of type

XM_TYPE_LONG and XM_TYPE_REAL. After the XM_TYPE information is read (see section
2.3.2.1), an XML metadata flag is checked to determine whether any hash information is included in
the file.

For dictionaries of type XM_TYPE_LONG or XM_TYPE_REAL, this hash information is always
present, but for dictionaries of type XM_TYPE_STRING, the information is present only if the flag
value 0x01 is set in the DictionaryFlags element (section 2.5.2.22.1) in the metadata for the
dictionary.

For general information about XM_TYPE_STRING hash data dictionary metadata, see section
2.5.2.22.

The following diagram shows the general layout of the XM_TYPE_STRING dictionary.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

DictionaryType

HashInformation (variable)

...

PageLayoutInformation (variable)

...

DictionaryPages (variable)

...

DictionaryRecordHandles (variable)

...

DictionaryType (4 bytes): The type of the dictionary. The value MUST be XM_TYPE_STRING.

HashInformation (variable): The required hash elements.

PageLayoutInformation (variable): The information that pertains to the whole dictionary,

excluding the hash information and the dictionary type that exist in the preceding fields. This
field contains information such as whether compression is used (on at least one page), the
string count, and the number of pages.

DictionaryPages (variable): One or more sets of information, each of which pertains to a

single page. A set of information includes the string store. Pr
el
im

in
ar

y

47 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

DictionaryRecordHandles (variable): A vector of record handle structures, one per string.

2.3.2.1.2.1 BLOBs and Base64 Encoding

BLOBs are supported and stored in the XM_TYPE_STRING hash data dictionary format. The reason

is that BLOBs are treated in the same manner as strings because they have already been encoded
by using base64 encoding before storage into a dictionary file.

BLOBs stored in Spreadsheet Data Model files MUST be encoded by using base64 encoding prior to
any other compression and storage. For information on the Spreadsheet Data Model file format, see
section 2.1.

If BLOBs are being stored in an XM_TYPE_STRING hash data dictionary, the
XM_STRDICT_BLOB_STORAGE_PAGE flag will be set in the DictionaryFlags element in the

metadata for the dictionary (see section 2.5.2.22.1). This XM_STRDICT_BLOB_STORAGE_PAGE
flag MUST be set if BLOBs are being stored in the dictionary.

Because they are strings (with only 64 character symbols used), BLOBs can also be compressed by

using Huffman compression. So if compression is used on the string store, both the strings and the
BLOBs will be compressed by using Huffman compression if they fall within all of the Huffman
compression constraints.

For more information about XM_TYPE_STRING hash data dictionary metadata, including the
dictionary flags that need to be set, see section 2.5.2.22. For more information about the Huffman
compression that is used, see section 2.7.4.

2.3.2.1.2.2 Required Hash Elements

If the flag value 0x01 (section 2.5.2.22.1) is set, the file contains the five required hash elements,
and the system will rebuild the hash table for the dictionary at run time—thus allowing fast lookups

into the string dictionary, even if the dictionary has duplicate strings.

If this flag is not set, no hash information is contained in the file. This behavior is different than that
for the XM_TYPE_LONG and XM_TYPE_REAL dictionaries (section 2.3.2.1.1.1).

If XM_STRDICT_OPTION_ALLOW_LOOKUP is not set, and therefore the five required hash
elements are not included, no lookups will be allowed in the dictionary. Thus, it will be assumed that
the dictionary contains only unique strings (so that no collisions will occur by having two strings that
are identical but now cannot be correctly identified without hash information).

However, when the flag is set, only the first five (required) hash elements are present, and cBins
MUST be set to the XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT value (section 2.3.3.1.4.1)
to indicate that no further hash information is included.

The underlying system does not use any included hash information, other than the five required
elements, in a dictionary. Therefore, there MUST NOT be any other hash information (other than
those five elements) in a dictionary file, regardless of the type of dictionary

For information about the required hash elements, see section 2.3.3.1.1. For how this information is
treated by the XM_TYPE_LONG and XM_TYPE_REAL hash data dictionaries, see section

2.3.2.1.1.1.

2.3.2.1.2.3 Dictionary Page Layout

XM_TYPE_STRING dictionaries (also referred to as string dictionaries) use a page system. This
system is similar to the one in which column data storage files (.idf files) use segments (see section Pr

el
im

in
ar

y

48 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.3.2.1). However, the two systems are not identical. Dictionary pages ought not to be confused
with operating-system pages.

An XM_TYPE_STRING dictionary divides the strings into pages. Each page can be of variable size
within certain limitations. For more information about dictionary page sizes and the page count limit,

see section 2.3.2.1.3.2.

Each page can be compressed or not, independent of any other page. The compression that is used
for string dictionary pages is a variation of Huffman compression, which is a widely known
compression algorithm that is often used for compressing strings. The Huffman compression
procedure that is used depends on whether the string is considered to originate from a single
character set (such as ASCII-US or Unicode using just the ASCII-US set) or from multiple character
sets. Not all character sets, even though they are Unicode, can be compressed via this Huffman

implementation. For more information about the Huffman compression algorithm that is
implemented, see section 2.7.4. For particular information regarding the implications of character
set choice, see section 2.7.4.1.4.

Following any hash information in the file (see section 2.3.2.1.2.2), the subsequent fields consist of

general information regarding the entire dictionary string store. Information that is specific to each
page within the dictionary is discussed separately (section 2.3.2.1.2.4).

The next 8 bytes indicate the number of strings in the dictionary store. This value applies to the
entire string store in the dictionary, so it includes all the pages in the string store. The following byte
is a Boolean flag that indicates whether the store has compressed pages. If this value is set to true,
at least one page in the dictionary’s string store is compressed, but it does not necessarily mean
that all the pages are compressed. The next 8 bytes indicate the length, in characters, of the longest
string in the entire store. The final 8 bytes indicate the total number of pages in the dictionary’s
string store.

The following diagram shows the layout of the elements just discussed, beginning with the number
of strings in the dictionary string store and ending with the total page count for the string store.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

StoreStringCount

...

fStoreCompressed StoreLongestString

...

... StorePageCount

...

...

StoreStringCount (8 bytes): The number of strings in the entire dictionary store (that is, in all

the pages). Pr
el
im

in
ar

y

49 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

fStoreCompressed (1 byte): Boolean. A flag that indicates whether at least one page in the
store is compressed. If the value is true, at least one page in the store is compressed.

StoreLongestString (8 bytes): The longest string, in number of characters, in the entire store.

StorePageCount (8 bytes): The number of pages in the entire dictionary store.

2.3.2.1.2.4 Dictionary String Store (Per Page) Information

Each page has the same format, beginning with general information for the page and then including
the actual stored strings, either compressed or uncompressed depending on whether the page is
marked as compressed.

Therefore, for each page, the first 8 bytes contain the mask state information for the page. This
mask indicates whether the page is compressed by using Huffman compression. (In contrast, the

fStoreCompressed flag (section 2.3.2.1.2.3) simply indicates whether at least one page is
compressed.) For more information about the values that this mask can hold, see section
2.3.2.1.3.3.

The mask state information is followed by a single byte containing a Boolean flag that indicates
whether the page contains NULL values. The next 8 bytes contain the starting index that is used for
locating the first record handle structure for the strings on this page. This index is zero-based

because it refers to the vector of record handle structures for the dictionary. For more information
about the XM_TYPE_STRING dictionary vector of record handles, see section 2.3.2.1.2.5.

Therefore, a starting index of zero refers to the first element in the record handle vector, and that
indexed record handle structure is the first record handle structure for the page. As another
example, a starting index of 1045 implies that index 1045 of the record handle vector contains the
first record handle of the page.

The next 8 bytes indicate the number of strings that are contained on this particular page. This

number is followed by another single byte containing a Boolean flag that indicates whether this
particular page is compressed. Both the mask state information and this Boolean flag MUST reflect
the same state (compressed or not compressed).

The final 4 bytes contain a special mark that indicates the beginning of the page’s string store. This
mark MUST be set to the unsigned integer value 0xAABBCCDD (in decimal, 2,864,434,397).

After all the strings, another special mark indicates the end of the page’s string store and the
beginning of the next page (see section 2.3.2.1.2.4.3).

For more information about the strings stored on uncompressed pages, see section 2.3.2.1.2.4.1.
For more information about the strings stored on compressed pages, see section 2.3.2.1.2.4.2. For
more information about the second string store page marker, see section 2.3.2.1.2.4.3. For more
information about the record handles vector information that is stored at the end of a dictionary file,
see section 2.3.2.1.2.5.

The following diagram shows a general layout of the page components just discussed.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PageMask

... Pr
el
im

in
ar

y

50 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

PageContainsNULLs PageStartIndex

...

... PageStringCount

...

... PageCompressed StringStoreBeginMark

... StringStore (variable)

...

StringStoreEndMark

PageMask (8 bytes): The mask state information for this page.

PageContainsNULLs (1 byte): A Boolean flag that indicates whether the page contains NULL
values. If the value is true, the page contains NULL values.

PageStartIndex (8 bytes): The start index of this page.

PageStringCount (8 bytes): The number of strings on this page.

PageCompressed (1 byte): A Boolean flag that indicates whether the page is compressed. If
the value is true, the page is compressed.

StringStoreBeginMark (4 bytes): A special mark that indicates the beginning of the actual
strings in the store for this page.

StringStore (variable): The string store (that is, the actual strings in the store).

StringStoreEndMark (4 bytes): The special mark that indicates the end of the string store for
this page.

2.3.2.1.2.4.1 Uncompressed Page Case

When the page is not compressed, the next 8 bytes after the general per-page information (section
2.3.2.1.2.4) indicate the number of characters that can still be stored on the page. In other words,

these 8 bytes indicate the remaining amount of room, in characters, that are available in the store.
This value is based on the page size, the current number of characters in the store, and other page
information that is taking up room on the page.

These characters are of type _TCHAR (section 2.1.1.2). The bytes are treated simply as a stream of
characters of type _TCHAR, without any knowledge of the actual bytes used per character symbol

or of the character set that is used. Internally, the system uses Unicode.

The next 8 bytes contain the number of used characters in the stored character buffer. This value

represents the number of characters in the string store buffer that have already been stored. It also
represents the next free offset that can be written to. The value MUST be accurate, and the implied
size (number of characters multiplied by the size of one character) MUST NOT exceed the actual.
allocated buffer size. Pr

el
im

in
ar

y

51 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The next 8 bytes indicate the allocation size, in bytes, that is needed to hold the buffer of string
character data. This value is followed by the set of uncompressed strings as one long byte buffer.

The number of bytes in this byte buffer is defined by the allocation size. Each string in this character
buffer MUST be terminated by the null character ('\0'). All size calculations need to take this

termination character requirement into account.

After this buffer, the second mark (see section 2.3.2.1.2.4.3) is read. Then, a new page, if present,
begins. This next page can again be either compressed or uncompressed.

Following the page-specific information for every page, a vector of record handles completes the
dictionary file (see section 2.3.2.1.2.5).

The following diagram shows the layout of the uncompressed page elements just discussed.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RemainingStoreAvailable

...

BufferUsedCharacters

...

AllocationSize

...

UncompressedCharacterBuffer (variable)

...

RemainingStoreAvailable (8 bytes): The remaining number of characters that can be written

to the character buffer.

BufferUsedCharacters (8 bytes): The number of characters that already exist in the character
buffer. This value also indicates the beginning offset where additional characters can be
written.

AllocationSize (8 bytes): The size of the character buffer.

UncompressedCharacterBuffer (variable): The character buffer. The size of this buffer is

specified by AllocationSize. The buffer contains the uncompressed strings that are stored on
this page. Each string in this character buffer MUST be terminated by the null character ('\0').

2.3.2.1.2.4.2 Compressed Page Case

If the page is compressed, the format is more complicated than that of the uncompressed page
case. The first 4 bytes contain the total number of bits in the store—that is, the bit offset of the end
of the last compressed string in the store. This value is an unsigned integer value. This value is

needed to determine the bits of the last string in the store, because the compressed strings are Pr
el
im

in
ar

y

52 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

referenced by their bit offsets into the store. For all but the last string, subtracting the next string's
offset from the current string's offset provides the current string’s bit length.

The next 4 bytes identify the type of character set—in other words, the character set mode that is
used. Strings can be of a single or of a multiple character set. If the character set is single, and if

the single character set uses only two bytes per character (because of those two bytes, one will be
the same for every character in the string), the Huffman encoding process can strip off the
identifying character set information and store the one byte that identifies the character set
separately from the actual stripped characters.

This procedure cannot be performed in the multiple character set case nor typically in the single
character case when multibyte characters are used (in which more than one byte is used per actual
character, not counting the character set identifier byte). In such situations, all the bytes MUST be

stored and then used in the encoding and decoding process. Hence, the Huffman process needs to
account for this difference.

The character set type identifier is an unsigned integer. For the values that identify the character set
mode that is used for the page’s string store, see section 2.3.2.1.3.4. For more information about

the Huffman compression algorithm that is used, see section 2.7.4.

The next 8 bytes contain the allocation size, in bytes, of the actual compressed strings in the store.

If the character set mode is single, the next byte, which contains an unsigned value, indicates the
character set that is used. Essentially, this byte would have been the upper byte of each character in
the single character set string. If the character set mode is multiple, this byte MUST NOT be present
in the file layout.

The next 4 bytes (uiDecodeBits) contain the maximum number of bits that are used to create a
fast lookup table for Huffman decoding. This number is also referred to as the codeword length. The
value is an unsigned integer. The valid range for uiDecodeBits is from 2 through 12. Although

Huffman encoding supports codewords of 2 through 15 bits, the lookup table supports only 2
through 12 bits, and any codewords that use lengths greater than 12 (or possibly less in some
cases) will be decoded through a Huffman tree traversal (rather than through the faster lookup
table). This value does not reflect the actual size of the codewords that are used if the longest

codeword is greater than 12, but this value MUST NOT be set any higher than 12. For more
information about how this value is set and what its effects are, see section 2.7.4.1.2.

The next 128 bytes (encodeArray), which are read as a stream of unsigned 8-bit integer values,

contain the encoded Huffman alphabet as an array. The system uses a Huffman alphabet of 256
characters, which is stored in an unsigned 8-bit integer array. This array contains the codeword
length for each element in the alphabet.

The next 8 bytes (ui64BufferSize) contain an unsigned integer that indicates the size, in 8-bit
integer units, of the buffer of the compressed strings. This value is expected to be the same as that
of AllocationSize (section 2.3.2.1.2.4.1). Because the buffer consists of a stream of bytes, and the

size of a byte is the same as the size of an unsigned 8-bit integer), this value is the same as the
number of bytes that are needed to create that buffer.

The next set of bytes contains the set of compressed strings for the compressed page. The number
of bytes equal the value of ui64BufferSize. These strings are compressed by using a constrained

version of classic Huffman compression, which requires the encoded array to correctly decode the
strings. Therefore, the information here MUST NOT be altered between the writing of the file by the
system and the next reading of the file; otherwise, the decompression of the strings might fail. Pr

el
im

in
ar

y

53 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

For more information about the Huffman compression algorithm that is used, the variables here that
are related to the Huffman compression, and how to encode and decode by using this constrained

Huffman implementation, see section 2.7.4.

Following the buffer, the second mark (see section 2.3.2.1.2.4.3) is read. Then, a new page, if

present, begins. Again, the next page (if present) can be either compressed or uncompressed.

Following the page-specific information for every page, a vector of record handles completes the
dictionary file (see section 2.3.2.1.2.5).

The following diagram shows the layout of the compressed page elements just discussed.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

StoreTotalBits

CharacterSetTypeIdentifier

AllocationSize

…

CharacterSetUsed uiDecodeBits

… encodeArray (128 bytes)

…

ui64BufferSize

…

CompressedStringBuffer (variable)

…

StoreTotalBits (4 bytes): The total number of bits in the store.

CharacterSetTypeIdentifier (4 bytes): A value that identifies whether the character set mode
is single or multiple.

AllocationSize (8 bytes): The allocation size that is needed for the string store (that is, for the
buffer).

CharacterSetUsed (1 byte): An identifier for the character set that is used. This value applies

only to the single character set mode. This value is not present if the character set mode is
multiple.

uiDecodeBits (4 bytes): The number of bits that are used in the lookup table for Huffman
decoding. Pr
el
im

in
ar

y

54 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

encodeArray (128 bytes): The encoded Huffman alphabet array for decoding.

Ui64BufferSize (8 bytes): The size of the character buffer. This size is expected to be the

same as the allocation size.

CompressedStringBuffer (variable): The buffer of compressed strings for this page.

2.3.2.1.2.4.3 Second Mark (End of Page Marker)

At the end of each page, 4 bytes contain a special mark that indicates the end of that page’s string
store. This mark MUST be set to the unsigned integer value 0xABCDABCD (in decimal,
2,882,382,797). For the general layout of a dictionary page (whether compressed or
uncompressed), see section 2.3.2.1.2.4.

2.3.2.1.2.5 Dictionary Record Handles Vector

What follows the pages and their information in the string dictionary is a vector of record handle
structures. Record handles have a one-to-one relationship with the strings in all the string stores.

That is, each string has a corresponding record handle, and each record handle has a corresponding
string. This correspondence exists regardless of whether the string is compressed. Each record
handle contains a bit or a byte offset and a page identifier that indicates which page holds the string

that is associated with that record handle. For more information, please section 2.3.2.1.3.5.

For decoding the vector, the next 8 bytes (elementCount) in the file represent the number of
elements in the vector (or array). This value is followed by 4 bytes (elementSize) that indicate the
size of each element in the vector. Each element in the vector is a record handle structure and. as
such, has the size of a record handle structure (see section 2.3.2.1.3.5). Therefore, the vector of
record handles is of variable size—specifically, elementCount multiplied by elementSize.

The vector of record handles is the last item in a hash data dictionary file. Extra padding with zeros

might exist at the end of the file. If present, this information is ignored and not read by the system.

The following diagram shows a general view of the record handle elements just discussed, beginning
with the number of records (elementCount) and ending with the vector of elements. It does not

show the internal details of the record handle structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

elementCount

...

elementSize

VectorOfRecordHandleStructures (variable)

...

elementCount (8 bytes): The number of elements in the record handle vector.

elementSize (4 bytes): The size, in bytes, of each element (that is, of one record handle
structure). Pr
el
im

in
ar

y

55 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

VectorOfRecordHandleStructures (variable): The vector of record handle structures.

2.3.2.1.3 Dictionary Structures, Enumerations, and Constants

This section contains information that is related to the data structures, enumerations, and other

constants that are used by the hash data dictionary file format.

2.3.2.1.3.1 XM_TYPE Enumeration

The XM_TYPE enumeration is used to identify the type of hash data dictionary that is stored in the
dictionary file. (Dictionary files have the .dictionary file name extension.)

enum XM_TYPE

{

 XM_TYPE_INVALID = -1,

 XM_TYPE_LONG = 0,

 XM_TYPE_REAL = 1,

 XM_TYPE_STRING = 2

};

The following table describes the available enumeration values.

Enumeration

value Meaning

XM_TYPE_INVALID The data type is invalid.

XM_TYPE_LONG The dictionary holds integers.

XM_TYPE_REAL The dictionary holds real (floating point) values.

XM_TYPE_STRING The dictionary holds strings. The strings might or might not be

compressed and are stored per page in the dictionary.

2.3.2.1.3.2 Page Size Limitations for an XM_TYPE_STRING Hash Data Dictionary

Each page that is persisted to disk within an XM_TYPE_STRING dictionary file is of variable size,

up to a page size limit of 4,294,967,296 bytes if uncompressed or 536,870,912 bytes if compressed.
N minimum page size exists.

The maximum number of pages in a dictionary file is 524,288.

2.3.2.1.3.3 Page Mask for an XM_TYPE_STRING Hash Data Dictionary

The XM_TYPE_STRING page mask contains compression information for the page.

The mask information is on a per-page basis and indicates whether the strings on the page have
been compressed by using Huffman compression. The default mask value indicates that the string
store for the page is not compressed.

The following table contains the mask values.

Name Value

XM_STRING_STORE_PAGE_OPTION_DEFAULT 0x000 Pr
el
im

in
ar

y

56 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Name Value

XM_STRING_STORE_PAGE_OPTION_COMPRESSED 0x001

2.3.2.1.3.4 Huffman Character Set Mode

The character set mode indicates the character set characteristics of the dictionary strings on that

dictionary page.

During the Huffman compression of strings, one of two possible modes can be used: a single
character set mode or a multiple character set mode. The former means that only one character set
is used for the strings being compressed for that page in the dictionary. The latter means that more
than one character set is being used for the strings being compressed for that page in the
dictionary.

Single character set and multiple character set modes can also be used for other situations, such as
the use of multibyte character sets and the Huffman compression of BLOBs that use base64

encoding. For more information, see section 2.7.4.

The following table lists the character set mode values for Huffman compression.

Name Value

XM_HUFFMAN_SINGLECHARSET 703121

XM_HUFFMAN_MULTICHARSET 703122

2.3.2.1.3.5 Record Handle Structures for an XM_TYPE_STRING Hash Data

Dictionary

The record handle structure contains bit or byte offset information and page identifying information
for a particular string in the dictionary.

The record handle has a one-to-one correspondence with a particular, unique string in an
XM_TYPE_STRING hash data dictionary string store. One record handle exists for each string in a
dictionary file.

The record handle structure that is used depends on whether the string is compressed. For
compressed strings, a bit offset is used. For uncompressed strings, a byte offset is used. The size of
the structure member is identical for both the bit and the byte offset. The page identifier member is
identical in meaning and size in both structures.

The XM_CompressedStringRecordHandle structure stores the bit offset and page identifier for a
compressed string that exists in the vector of record handle structures used by the
XM_TYPE_STRING hash data dictionary.

struct XM_CompressedStringRecordHandle

{

 unsigned __int32 bitOffset;

 unsigned __int32 pageID;

};

bitOffset: The compressed string bit offset, starting with zero for the first string of each page. A bit

offset is relative to its page, not to the entire dictionary. Pr
el
im

in
ar

y

57 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

pageID: The page identifier, which is a zero-based index (beginning at page zero and continuing
through the total number of pages for the dictionary minus one).

The XM_ConstantStringRecordHandle stores the byte offset and page identifier for an
uncompressed string that exists in the vector of record handle structures used by the

XM_TYPE_STRING hash data dictionary.

struct XM_ConstantStringRecordHandle

{

 unsigned __int32 byteOffset;

 unsigned __int32 pageID;

};

byteOffset: The uncompressed string byte offset, starting with zero for the first string of each

page. A byte offset is relative to its page, not to the entire dictionary.

pageID: The page identifier, which is a zero-based index (beginning at page zero and continuing
through the total number of pages for the dictionary minus one).

2.3.3 Column Data Hierarchy Hash Index

Column data can have an associated value hash index file generated. An example of a generated file
name for a column data hierarchy hash index file for a table that has the identifier "Table1" and a
column that has the identifier "Cat" is 1.H$Table1$Cat.hidx. For an explanation of the interpretation
of the substrings within the file name, see section 2.2.

The column data hierarchy hash index is a hash index file of the unique data identifier values that
are present in the column. The file is neither ordered nor compressed.

It is necessary to reference the XML metadata file to determine whether a column data hierarchy

hash index file is present. If a particular XMRawColumn object—specifically, the XMRawColumn
object of the Column item in the Columns collection that has a name equal to the column name—
has a DataObject in the DataObjects collection for which the

class="XMValueDictionary<XM_Real>" (section 2.5.2.19) or for which the
class="XMValueDictionary<XM_Long>" (section 2.5.2.18), the column MUST have a column data
hierarchy hash index file generated. For an explanation of how to interpret the XML metadata file,

see section 2.5.

2.3.3.1 File Layout for Hash Index Files

Unlike .idf files or XM_TYPE_STRING type dictionary files, hash index files—that is, files that have
the .hidx file name extension—do not use any compression.

The description of the hash index file format layout (also referred to as the .hidx file format) is
divided into sections. The first section (section 2.3.3.1.1) pertains to hash information that MUST be

present in any file that uses a hash. Such files have either the .hidx or the .dictionary extension.
These files include column data hierarchy hash index files (section 2.3.3), relationship hash index
files (section 2.4.3), and dictionary files (section 2.3.2.1).

2.3.3.1.1 Required Elements for All Files That Use Hashing

Whenever a hash is used (except in the case of dictionaries of type XM_TYPE_STRING as specified
in section 2.3.2.1.2), the first five elements of the hash table MUST be present. These elements are

described in the remainder of this section. Pr
el
im

in
ar

y

58 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The first 4 bytes represent an enumeration value that either identifies the hash algorithm used or
equals the XM_INVALID value, which indicates that no hashing algorithm was specified in the

persisted file. In most cases, there is no choice for the hashing algorithm, so the hashing algorithm
does not need to be saved for future reference. However, this algorithm MUST be specified

correctly; otherwise, an error could occur. For more information about the hash algorithm
enumeration, see section 2.3.3.1.4.2.

Dictionary files need to include only the first five required elements, so no knowledge of the actual
hashing algorithm (that is, the actual procedural code used) is needed. However, in hash index files
(.hidx files), full hash information is required, so the actual hashing algorithm used to create this
information MUST be the one that is specified in section 2.3.3.1.3. This hashing algorithm is the one
that the system uses and expects. Also, as specified in the hash algorithm enumeration (section

2.3.3.1.4.2), the hash algorithm identifier is set to XM_INVALID.

The next 4 bytes contain the size, in bytes, of the HashEntry hash entry structure (section
2.3.3.1.4.5). Each hash entry structure is this size, which is referred to here as HashEntrySize.
This size varies depending on the hash policies that are in place. For more information about the
HashEntry structure and hash policies, see section 2.3.3.1.4.5.

The next 4 bytes specify the size, in bytes, of the HashBin hash bin structure. This size is referred

to as HashBinSize for this file format description. The structure varies in size because it includes
HashEntry structures. For more information about the HashBin structure, see section 2.3.3.1.4.4.

The next 4 bytes specify local entries or a local entry count, meaning the number of hash entries
that are allowed per bin before an overflow occurs (section 2.3.3.1.4.6). If overflow hash entries
(also called collision entries) exist, they are added sequentially to the end of the file.

The next 8 bytes specify the number of bins that are used in the hash. This number is referred to as
cBins in this file format description. Depending on the data type, a minimum required value exists

for the number of bins (also referred to as the minimum number of buckets for a hash). For more
information about bin count minimums, see section 2.3.3.1.4.3. The value of cBins either reflects
the number of bins or is set to XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT (section
2.3.3.1.4.1).

If cBins is set to XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT, that signals that the hash
table was not created, so processing of the hash in the file is stopped at this point. Dictionary files
(section 2.3.2.1) MUST set this value to XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT to

indicate that they do not include any hash table information beyond these required elements. For
more information about XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT, see section
2.3.3.1.4.1.

It is important to emphasize that even if cBins is set to stop any further hash table processing, the
HashBin and HashEntry structures MUST be the correct, expected size for the current hash policy
in place and the type of hash in use, the hash algorithm MUST be identified as expected by the

system (section 2.3.3.1.4.2), and the local entries value MUST equal the
XM_HASH_ENTRY_COUNT_PER_BIN calculated value (section 2.3.3.1.4.6), which depends on
the hash policies that are in place and the type of hash.

If any of these values is incorrect, a file error will likely occur. For more information about all of
these structures, see section 2.3.3.1.4. For a discussion about the effects of hash policies, see

section 2.3.3.1.4.5.

The following diagram shows the common bytes that are required in any file containing hash

information (that is, .hidx and .dictionary files). Note that string dictionaries comprise the only
dictionary file type that can fully exclude any hash information, but there are ramifications to doing Pr

el
im

in
ar

y

59 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

so (section 2.3.2.1.2.2.) For more information about the actual structure of HashBin or
HashEntry, section 2.3.3.1.4.4 or section 2.3.3.1.4.5, respectively.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

HashAlgorithm

HashEntrySize

HashBinSize

LocalEntryCount

cBins

...

HashAlgorithm (4 bytes): The hash algorithm specified.

HashEntrySize (4 bytes): The size of the HashEntry structure.

HashBinSize (4 bytes): The size of the HashBin structure.

LocalEntryCount (4 bytes): The number of hash entries that are allowed per bin before an
overflow (collision) occurs.

cBins (8 bytes): Either the number of bins used in the hash or
XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT. The latter value is used by dictionaries.

2.3.3.1.2 Required Elements for Hash Index Files

The following subsections contain required information for hash index files (.hidx files). Note that an
.hidx file also requires the elements discussed in section 2.3.3.1.1.

2.3.3.1.2.1 Records and Hash Statistics

This section covers the number of records in the hash and any hash statistics that are included in
the file. The next 8 bytes specify the number of records in the hash table. The next 8 bytes after

that indicate the current mask to be used. This mask simply equals the number of bins minus one.
The next byte contains a Boolean flag that indicates whether hash statistics were gathered and
included in the file. If this value is true, hash statistics have been included in the file.

The hashing algorithm used to create the hash table is specified in section 2.3.3.1.3.

The rest of this section deals with the hash statistics. This data is present only if the flag that
indicates the gathering of hash statistics is set to true. If the flag is set to false, the hash statistics

data MUST NOT be included.

Because the hash statistics section is an optional section (indicated by the just-mentioned flag),
some of the information in the section duplicates information that is found in previous elements. If
hash statistics have been included, the next 8 bytes indicate the number of elements in the hash. Pr

el
im

in
ar

y

60 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The next 8 bytes following that indicate the number of bins available in the hash, and the following 8
bytes indicate the number of bins available that were actually used in the hash.

The next 8 bytes represent the number of elements that were available via fast access. An element
is a fast access element if it is in the actual hash bin and therefore not an overflow (or collision) for

that hash bin. An overflow element requires a longer access time.

The next 8 bytes contain the local entry size for each bin—in other words, the number of hash
entries that can be contained in one bin before an overflow occurs. This size is the same as the local
entry count mentioned in the five required elements (section 2.3.3.1.1). The next 8 bytes contain
the maximum probes, or maximum chain count, for one bin. This value indicates the largest number
of entries for one of the bins, over the range of all the bins. If this value is greater than the
maximum number of hash entries that can be contained in a bin before an overflow occurs, at least

one of the bins has had an overflow and thus has extra hash entries (also referred to as collision
entries). These extra entries are added to the end of the file.

The next set of bytes represent a histogram. Of these bytes, the first 8 (elementCount) represent
the number of elements in the histogram. The next 4 bytes (elementSize) represent the size, in

bytes, of each element in the vector (or array). Therefore, the histogram itself is of variable size—
specifically, elementCount multiplied by elementSize, in bytes. The histogram is a vector of

elements of size elementSize. If the value of an element in the histogram vector is not zero, that
value signifies the number of hash bins containing a certain number of entries in the bin—where the
certain number is the array index number of that element. For example, if the histogram vector
element at index 3 contains a value of 5, five hash bins each have three hash entries in their bin.

The histogram can contain empty array elements because it MUST include all the previous array
elements up to the array elements that have nonzero values. The histogram can also include empty
array elements following the last nonzero array element. If the number of entries signifies an

overflow, the histogram will still show the total number of hash entries in a bin, including the
overflow elements. Note that despite the fact that this value includes the total number of hash
entries, a hash bin in reality can contain only the maximum number of elements already specified as
the value of the LocalEntryCount field (section 2.3.3.1.1), and any overflow entries are chained
internally and persisted to the file at the end of the file.

For example, if the histogram array element at index 3 contains a value of 9, three hash bins have
nine entries each in their respective bins. If the maximum local entry count (or local entry size) for

each bin is six, the implication is that each of those bins had an overflow and have three collision
entries each (because nine minus six equals three) at the end of the file.

The following diagram shows the hash structure elements just discussed, beginning with the number
of records and ending with the hash statistics histogram element.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

NumberOfRecords

...

CurrentMask

... Pr
el
im

in
ar

y

61 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

HashStats NumberOfElements

...

... NumberOfBins

...

... NumberOfUsedBins

...

... FastAccessElements

...

... LocalsSizePerBin

...

... MaximumChain

...

... elementCount

...

... elementSize

...

... HistogramVector (variable)

...

NumberOfRecords (8 bytes): The number of records in the hash table.

CurrentMask (8 bytes): The current mask to use.

HashStats (1 byte): A Boolean flag that specifies whether hash statistics have been included in

the file. If the value is true, hash statistics have been included in the file. These hash

statistics are the elements following this Boolean flag—from NumberOfElements through
HistogramVector.

NumberOfElements (8 bytes): The number of elements in the hash.

NumberOfBins (8 bytes): The number of bins available in the hash. Pr
el
im

in
ar

y

62 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

NumberOfUsedBins (8 bytes): The number of bins that are actually used in the hash.

FastAccessElements (8 bytes): The number of elements with fast access.

LocalsSizePerBin (8 bytes): The number of hash entry structures that can be contained in one
bin before an overflow occurs.

MaximumChain (8 bytes): The largest number of entries in a bin, over all the bins.

elementCount (8 bytes): The number of elements in the histogram vector.

elementSize (4 bytes): The size, in bytes, of each element in the histogram vector.

HistogramVector (variable): The vector of elements, each of which has the size that is
specified by elementSize.

2.3.3.1.2.2 Hash Bin Entries

The next section of the hash includes the hash bins that are created and used during the hashing

process. The number of entries, which appear in sequential bin order, is specified by cBins. Each
entry is the size (HashBinSize) of the hash bin structure (HashBin structure). Each hash bin
structure also contains an array of hash entries (HashEntry structures), up to the maximum
number that is allowed per bin, so no overflow entries will exist within this structure. The sizes of
the hash bin structure and the hash entry structure vary depending on several factors, including the

operating system that is used and the current hash policies that are in place. For more information
about the HashBin structure and the HashEntry structure, see section 2.3.3.1.4.4 and section
2.3.3.1.4.5.

The following diagram shows a general view of the hash bin entries in a file. This particular example
shows four HashBin entries that simply exist sequentially, one after another, in the file. The
diagram does not show the details within each hash bin entry.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

HashBinEntry (variable)

...

HashBinEntry (variable)

...

HashBinEntry (variable)

...

HashBinEntry (variable)

...

HashBinEntry (variable): A HashBin structure. Pr
el
im

in
ar

y

63 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

HashBinEntry (variable): A HashBin structure.

HashBinEntry (variable): A HashBin structure.

HashBinEntry (variable): A HashBin structure.

2.3.3.1.2.3 Overflow Hash Entries

The final section of the file includes the collisions, if any, from any overflow in the hash bins. The
next 8 bytes contain the total count of the collisions. This value includes the collisions for all the
hash bins. This value is followed by the collision entries. Each collision entry is a HashEntry
structure and, as such, is the size (HashEntrySize) of a hash entry. For more information about
the HashEntry structure, see section 2.3.3.1.4.5.

Collisions are added sequentially to the end of file in the same order as their associated hash bins.

Zero or more collisions might exist for a hash table. However, the 8 bytes that specify the count of
collisions MUST be present, even if it contains a value of zero to indicate that no collisions exist.

The collision entries are the last elements in a hash index file (.hidx file). Padding with zeros might
exist at the end of the file. If present, this padding is ignored and not read by the system.

The following diagram shows a general view of the collisions count and the collision hash entries in
the file.

This particular example shows four collision HashEntry entries that simply exist sequentially, one
after another, in the file. The details within the HashEntry structures are not shown.

Each of these collision entries corresponds to a hash bin that has one or more collisions. However,
which collision entry corresponds to which hash bin cannot be gleaned from just the sequential
collision entries here. The correspondence can, however, be inferred by looking at the m_Count
member of each of the HashBin structures (section 2.3.3.1.4.4) to see whether the value of
m_Count exceeds XM_HASH_ENTRY_COUNT_PER_BIN (section 2.3.3.1.4.6), which equals the

value of the local entry count in the five required hash elements (section 2.3.3.1.1).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

CollisionCount

...

CollisionHashEntry (variable)

...

CollisionHashEntry (variable)

...

CollisionHashEntry (variable)

... Pr
el
im

in
ar

y

64 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

CollisionHashEntry (variable)

...

CollisionCount (8 bytes): The total number of collisions over all the hash bins.

CollisionHashEntry (variable): The HashEntry structure for this collision entry.

CollisionHashEntry (variable): The HashEntry structure for this collision entry.

CollisionHashEntry (variable): The HashEntry structure for this collision entry.

Collision HashEntry (variable): The HashEntry structure for this collision entry.

2.3.3.1.3 Hashing Algorithms

The following hashing algorithm is used by hash index files (files with extension HIDX). This

algorithm MUST be used in order to ensure proper hash table creation.

The hashing algorithm is shown in pseudocode.

INPUT keyValue

CREATE MagicConstant as an unsigned 32 bit integer

CREATE cHashBitsUsed as 64 bit integer

CREATE cBuckets as a double

SET cBuckets to number of bins, also called buckets, to be used in hash

SET MagicConstant to 0x12B9B6A5

SET cHashBitsUsed to (CEILING (LOG(cBuckets)/LOG(2.0)))

SET keyValue to (keyValue MultiplyBy MagicConstant)

SET keyValue to (keyValue RIGHT_BITSHIFT by (32 – cHashBitsUsed))

SET hashForKeyValue to keyValue

OUTPUT hashForKeyValue

The hash and key value variable types can be determined by looking at the HashEntry structure

(section 2.3.3.1.4.5).

There is a minimum size for the number of bins used for proper hash table creation. The variable
cBuckets MUST use at least the minimum bin value. For the bin minimum values, please see section
2.3.3.1.4.3.

2.3.3.1.4 Hash Structures, Enumerations and Constants

The following subsections contain information related to the data structures, enumerations, and
other constants that are used by files that include hash information (that is, .hidx and .dictionary
files).

2.3.3.1.4.1 XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT

The XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT constant indicates that the bin count is

invalid.

When the value of cBins (section 2.3.3.1.1) is set to this constant, it means that no further hash
information is included in the file. This value is used by column data dictionary files (.dictionary
files). For more information about dictionary files, see section 2.3.2. Pr

el
im

in
ar

y

65 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT is not used in hash index files (.hidx files)
because by definition, these files are expected to have full hash information, with only the hash

statistics being optional (section 2.3.3.1.2.1).

The XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT constant has a value of –1.

2.3.3.1.4.2 Hash Algorithm Enumeration and Constant

The XMHashAlgorithm enumeration indicates which XM_TYPE_STRING dictionary hash algorithm
is in use. The XM_INVALID constant is used in all other cases.

In most hash algorithm scenarios, the hash algorithm value is set to XM_INVALID, which indicates
that no hashing algorithm was specified in the persisted file. The algorithm is determined at run
time based on the type of file and its data.

For hash index files (.hidx files) and column data dictionary files (.dictionary files) of type integer
(XM_TYPE_LONG) or real (XM_TYPE_REAL), it is always the case that the hash algorithm value
is set to XM_INVALID. For more information about the XM_TYPE enumeration, see section

2.3.2.1.3.1.

Name Value

XM_INVALID –1

However, for dictionaries of type XM_TYPE_STRING, the value is not XM_INVALID but MUST be

one of values in the XMHashAlgorithm enumeration.

enum XMHashAlgorithm

{

 XM_HASH_ALGORITHM_SQL = 0,

 XM_HASH_ALGORITHM_FAST_CI = 1,

 XM_HASH_ALGORITHM_FAST_CS = 2

};

The following table describes the enumeration values in XMHashAlgorithm.

Enumeration value Meaning

XM_HASH_ALGORITHM_SQL The hash algorithm is the default algorithm. It will work for

all string situations but SHOULD NOT be chosen if one of the

other two values in XMHashAlgorithm can be used.

XM_HASH_ALGORITHM_FAST_CI This algorithm can be used if the locale identifier is 1033 and it is

acceptable to ignore the case of the characters in the strings (that is, if
the strings are case insensitive).

XM_HASH_ALGORITHM_FAST_CS This algorithm can be used if either the locale identifier is 1033 and the

characters are case sensitive or the strings are BLOBs that use base64
encoding.

2.3.3.1.4.3 Hash Bin Bucket Size Minimums

A minimum number of bins (or buckets) is required for hashes that are used in .hidx files. Pr
el
im

in
ar

y

66 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

In general, for all data other than string data, the minimum bin count is 16. For string data, there
MUST be a minimum of 256 bins. Note that .hidx files contain integer data, not string data, as

indicated by the m_Key and m_Value members in the HashEntry structure (section 2.3.3.1.4.5).

Name Value

XM_HASH_MINIMUM_BIN_COUNT 16

XM_STRING_HASH_MINIMUM_BIN_COUNT 256

2.3.3.1.4.4 HashBin Structure

The HashBin structure contains information about the hash bins used.

The HashBin structure is system cache aligned and therefore varies in size according to the

operating system and alignment requirements for that operating system. For alignment reasons, the
chain pointer (the m_rgChain member) MUST be the first element in the structure. For 32-bit
systems, padding is also added to the structure to ensure that the count-of-entries element is

properly aligned.

The hash bin contains one or more hash entries. However, because of alignment issues and the
variable size of the HashEntry structure (section 2.3.3.1.4.5), it is possible for the local hash entry
array (the m_rgLocalEntries member) to contain no hash entries, where

XM_HASH_ENTRY_COUNT_PER_BIN evaluates to zero. In such a case, all the hash entries are
referenced through the chain pointer, m_rgChain. (The chain pointer is an array of HashEntry
structures.)

DECLSPEC_ALIGN(SYSTEM_CACHE_ALIGNMENT_SIZE) struct HashBin

{

 HashEntry* m_rgChain;

#ifndef _WIN64

 unsigned __int32 m_Padding;

#endif

 unsigned __int32 m_Count;

 HashEntry m_rgLocalEntries[XM_HASH_ENTRY_COUNT_PER_BIN];

};

m_rgChain: The pointer for the chain of collisions, which is a chain of HashEntry structures that

represent the overflow (collision) entries. The value is NULL when persisted to disk, and the
collisions are added to the end of the file.

m_Padding: Padding for alignment purposes. This padding is included for 32-bit systems (the
compiler constant _WIN64 is not defined) and excluded for 64-bit systems (_WIN64 is defined).

m_Count: The total number of HashEntry entries in the bin.

m_rgLocalEntries: An array of size XM_HASH_ENTRY_COUNT_PER_BIN that contains the
locally stored HashEntry entries (not the overflow collision entries).

The DECLSPEC_ALIGN macro is defined as follows:

#if (_MSC_VER >= 1300) && !defined(MIDL_PASS)

#define DECLSPEC_ALIGN(x) __declspec(align(x))

#else

#define DECLSPEC_ALIGN(x) Pr
el
im

in
ar

y

67 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The SYSTEM_CACHE_ALIGNMENT_SIZE constant is defined as follows:

#if defined(_AMD64_) || defined(_X86_)

#define SYSTEM_CACHE_ALIGNMENT_SIZE 64

#else

#define SYSTEM_CACHE_ALIGNMENT_SIZE 128

#endif

For more information about the HashEntry structure, see section 2.3.3.1.4.5. For more

information about XM_HASH_ENTRY_COUNT_PER_BIN, see section 2.3.3.1.4.6.

2.3.3.1.4.5 HashEntry Structure

The HashEntry structure contains information about the hash entries used.

In most cases, a hash entry structure contains a key/hash pair for the hash table. However,
depending on the hash policies in use, the hash entry structure information can vary, including

either more or less information. The hash key MUST be included. Other elements vary.

A hash policy defines which elements are required in the HashEntry structure. The hash policies
vary according to internally defined variables that seek to balance load factors, storage issues, and

processing speeds.

The hashes for XM_TYPE_LONG, XM_TYPE_REAL, and XM_TYPE_STRING hash data
dictionaries are recalculated at run time, so only the basic, required elements for the hash are
required in the file format (section 2.3.3.1.1), with cBins set to
XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT (section 2.3.3.1.4.1). Even so, hash policies
play a role in determining the expected size of the HashBin (section 2.3.3.1.4.4) and HashEntry
structures and the value of the local entry count (section 2.3.3.1.4.6) because they all use the

HashEntry structure.

However, for files with the .hidx file name extension, where full hash information is required, all the
hashing information is included and MUST be accurate. For hash index files (.hidx files), the hash

value (m_Hash) is included in HashEntry, along with the required element, the key (m_Key). The
hashing algorithm used is also specified and MUST be used to generate the hash information
(section 2.3.3.1.3).

The following code shows the full HashEntry structure, which is defined by using the
DECLSPEC_ALIGN(X) macro (section 2.3.3.1.4.4), where X = 1. The code includes comments
that contain pseudocode to indicate which structure members will be included in the

structure for various policy settings. Only m_Key is guaranteed to be in any
HashEntry structure for any policy.

DECLSPEC_ALIGN(1) struct HashEntry

{

 // IF this policy is true (HASHPOLICY_INCLUDEHASH) THEN

 // include member m_Hash

 unsigned __int32 m_Hash;

 // END IF

 // IF this policy is true (HASHPOLICY_INCLUDELENGTH) THEN

 // include member m_Len

 unsigned __int32 m_Len; Pr
el
im

in
ar

y

68 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 // END IF

 TKey m_Key; // Required member in all cases

 // IF this policy is true (HASHPOLICY_INCLUDEVALUE) THEN

 // include member m_Value

 TValue m_Value;

 // END IF

};

m_Hash: The hashing value that is paired with the key value, m_Key. Including and using the

hash instead of the value makes sense for simple types, where comparing the hashes has the same
cost as comparing the values. It does not make sense for complex types or character data (strings).

m_Len: The length field. The meaning varies, depending on usage. For example, for strings, the

length means the length of the string. Using this member increases the size of the structure and
might result in more overflows (collisions).

m_Key: The key value that is associated with the hashing value, m_Hash. This member MUST be
present in all cases. The data type for this value varies, depending on the type of the hash table
being used, as shown in the following table.

File type Data type for m_key (TKey resolution)

.hidx file Int32

XM_TYPE_LONG dictionary (32-bit) Int32

XM_TYPE_LONG dictionary (64-bit) Int64

XM_TYPE_REAL dictionary DOUBLE

XM_TYPE_STRING dictionary Int32

m_Value: The actual value that is associated with the key, m_Key. The data type for this value
varies depending on the type of hash table that is being used, as shown in the following table.

File type Data type for m_Value (TValue resolution)

.hidx file Int32

XM_TYPE_LONG dictionary (32-bit) Int32

XM_TYPE_LONG dictionary (64-bit) Int32

XM_TYPE_REAL dictionary Int32

XM_TYPE_STRING dictionary Int32

The following table summarizes the relationship between a hash policy setting and the files that are
affected by that setting. Note that the constant string hash policy is only for XM_TYPE_STRING
dictionaries. This policy can be used only when each string mapped via the hash is guaranteed to be Pr

el
im

in
ar

y

69 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

a unique string. XM_TYPE_STRING dictionaries can use this hash policy when the strings per page
are guaranteed to be unique strings, with no duplicates on that page (section 2.3.2.1.2.2).

Hash policy setting Affected files Description

HASHPOLICY_INCLUDEHASH Both .hidx and

.dictionary files
This value (true) is the default for all

hash policies.

Note that for XM_TYPE_STRING dictionaries,

the data identifier is the key, but the length of the
string is not stored separately from the hash
value. Instead, the high-order word of the string
hash and the low-order word of the string’s length
are combined into the stored hash value. This
applies to both Huffman compressed strings and
strings that are not compressed.

However, this does not apply if the constant string
hash policy is being used, instead. In that case,
the length is included separately.

HASHPOLICY_INCLUDELENGTH XM_TYPE_STRING
dictionaries

(when full hash

is included)

This value is true if the constant string
hash policy is being used.

HASHPOLICY_INCLUDEVALUE XM_TYPE_STRING
dictionaries

(when full hash

is included)

This value is true if the constant string
hash policy is being used.

2.3.3.1.4.6 XM_HASH_ENTRY_COUNT_PER_BIN

The XM_HASH_ENTRY_COUNT_PER_BIN value dictates how many HashEntry structures
(section 2.3.3.1.4.5) can be contained in a HashBin structure (section 2.3.3.1.4.4) before an
overflow occurs.

The XM_HASH_ENTRY_COUNT_PER_BIN value depends on the target architecture’s cache line
size as well as the HashEntry structure (section 2.3.3.1.4.5) being used, which varies in form and
size depending on which hash policies are in effect.

For 32-bit and 64-bitapplications, how to calculate the XM_HASH_ENTRY_COUNT_PER_BIN
value is shown in the following pseudocode:

IF application is 32 bit OR 64 bit THEN

 SET XM_HASH_ENTRY_COUNT_PER_BIN to ((CacheLineSize MultiplyBy SYSTEM_CACHE_ALIGNMENT_SIZE

– (8 + (Size-Of (unsigned 32 bit integer))) / (Size-Of (HashEntry structure))

END IF

For the definition of SYSTEM_CACHE_ALIGNMENT_SIZE, see section 2.3.3.1.4.4.

CacheLineSize is dependent on the hash policies that are in place (see section 2.3.3.1.4.5).

However, in all cases in this document, CacheLineSize is equal to 1.

The hash entry structure (HashEntry) is variable and its size depends on the hash policies that are
in place. For more information, see section 2.3.3.1.4.5. Pr

el
im

in
ar

y

70 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.3.4 RowNumber Column

Every table MUST have a RowNumber file generated for the table. An example of a generated file
name for a RowNumber file for a table that has the identifier "Table1" is 4.Table1.RowNumber.0.idf.

For an explanation of the interpretation of the substrings within the file name, see section 2.2.

The RowNumber file is used to tell the system how many rows are contained in each data segment
of the column data. This information is always encoded by using
XMHybridRLECompressionInfo<class XM123CompressionInfo> compression (section 2.7.3.16).

It is necessary to reference the XML metadata file to understand and decode the contents of the
RowNumber file. The metadata file for the RowNumber file is contained in the same file as the
metadata for the column data (section 2.3.1). The Column item in the Column collection for which

the value of the name attribute is "RowNumber" contains the metadata for this file. For an
explanation of how to interpret the metadata file, see section 2.5.

2.3.4.1 File Layout for the RowNumber Column

The RowNumber column is a special case for column data storage files. In addition to generating a
column data storage file (.idf file) for every column in a source data table, an additional .idf file is

generated to represent a column of row numbers. This RowNumber column is an internally
generated column, but as a result, does have its own column data storage file (.idf file). The
purpose of a RowNumber file is to associate a row number index with each row of each segment,
per segment, for the entire span of the column. As such, a RowNumber column provides a row
number index that can be used to select a particular row or set of rows across columns. However,
because the system generates these files and knows their function, it does not mean that each
actual row number is encoded in the .idf file. In actuality, a more compact way is used.

In fact, although RowNumber columns do use XMHybridRLE compression, they use only
XM123CompressionInfo subsegment compression. This hybrid combination is unlike the typical
XMHybridRLE and XMRENoSplit case. The .idf file format layout is the same, but the subsegment is
just a placeholder, and the RLE segment for each segment is encoded in a special way that details
the row number information, which the system already knows how to interpret. For a detailed
discussion of the compression used for the RowNumber column and how to interpret the

information correctly, see section 2.7.3 and section 2.7.3.16.

2.4 System-Generated Data Files

The system generates not only the files that represent the data but additional files, depending on
the data. These additional files are described in this section.

2.4.1 Column Data Position–to–Identifier Mapping

Column data can have a position–to–identifier mapping file. An example of a position–to–identifier

mapping file name for a table that has the identifier "Table1" and a column that has the identifier
"Label" is 1.H$Table1$Label.POS_TO_ID.idf. For an explanation of the interpretation of the
substrings within the file name, see section 2.2.

The position–to–identifier mapping file contains an array of data identifier values. The order of the

array is by the sorted order of the underlying values that the data identifiers represent. The first
value in the array corresponds to the data identifier for which the underlying value that the data

identifier represents is first in sorted order. For example, if the values in the column are sorted, and
the first value after sorting has a data identifier of 5, the first value in the array is 5. The second
array value corresponds to the data identifier of the second entry when the column values are
sorted, and so on. Pr

el
im

in
ar

y

71 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The position–to–identifier mapping file is compressed by one of several methods, although it is
always be compressed by using an XMRENoSplit compression method and does not use

XMHybridRLE compression. For a discussion of the types of compression available that are to be
used, see section 2.7.

It is necessary to reference the XML metadata file to understand and decode the contents of the
column position–to–identifier mapping file. An example of a file name for the file that contains the
metadata for the position–to–identifier mapping file for a column that has the identifier "net" in a
table that has the identifier "Table1" is H$Table1$net.0.tbl.xml. The metadata for the position–to–
identifier mapping column is found in the Columns collection of the XMSimpleTable object in the
file. In the Columns collection, the Column item that has the name "POS_TO_ID" contains the
metadata for this file. For an explanation of how to interpret the metadata file, see section 2.5.

2.4.1.1 File Layout for Column Data Position–to–Identifier Mapping File

The column data position–to–identifier mapping file uses the same .idf file layout as the column data
storage .idf file, including the use of segments and segment layout (section 2.3.1.1.) However,
differences exist.

The position–to–identifier mapping file is a system-generated file and never uses XMHybridRLE

compression but only XMRENoSplit compression. This fact also means that, at a minimum, a
position–to–identifier mapping file always has one segment and is never associated with a
subsegment. The reason is that subsegments are associated only with XMHybridRLE compression,
which in turn is used only by column data storage .idf files and the special case of the RowNumber
column data .idf file.

2.4.2 Column Data Identifier–to–Position Mapping

Column data can have an identifier–to–position mapping file. A data identifier–to–position mapping
file is generated only in the case where a value hash table has been generated. An identifier–to–
position mapping file is not generated for a dictionary file. An example of a generated identifier–to–
position mapping file name for a table that has the identifier "Table1" and a column that has the
identifier "net" is 1.H$Table1$net.ID_TO_POS.idf. For an explanation of the interpretation of the

substrings within the file name, see section 2.2.

The identifier–to–position mapping file contains an array of position values that are zero-based

numbers. These position values represent the positions within the sorted values of the underlying
source data values that are represented by the data identifiers. The order of the array is by data
identifier value, from lowest to highest. The first array value is the position within the set of source
data values of the lowest-numbered data identifier, the second value is the position of the second-
lowest data identifier value, and so on. For example, if the lowest-valued data identifier is sorted to
the fifth position in the array of the source data values that are underling the data identifiers, the

first value in this array will be 4 (because the array is zero-based). The second array item contains
the position within the array of sorted source data values that is assigned to the second-lowest data
identifier value, and so on.

The identifier–to–position mapping file is compressed by one of several methods, although it is
always compressed by using an XMRENoSplit compression method and does not use XMHybridRLE
compression. For a discussion of the types of compression that are available to be used, see section

2.7.

It is necessary to reference the XML metadata file to understand and decode the contents of the
column identifier–to–position mapping file. An example of a file name for the file that contains the
metadata for the data identifier–to–position mapping file for a column that has the identifier "net" in
a table that has the identifier "Table1" is H$Table1$net.0.tbl.xml. The metadata for the data Pr

el
im

in
ar

y

72 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

identifier–to–position mapping column is found in the Columns collection of the XMSimpleTable
object in the file. In the Columns collection, the Column item that has the name "ID_TO_POS"

contains the metadata for this file. For an explanation of how to interpret the metadata file, see
section 2.5.

2.4.2.1 File Layout for Column Data Identifier–to–Position Mapping File

The column data identifier–to–position mapping file uses the same .idf file layout as the column data
storage .idf file, including the use of segments and segment layout (section 2.3.1.1.) However,
differences exist.

The identifier–to–position mapping file is a system-generated file and never uses XMHybridRLE
compression but only XMRENoSplit compression. This fact also means that, at a minimum, an

identifier–to–position mapping file always has one segment and is never associated with a
subsegment. The reason is that subsegments are associated only with XMHybridRLE compression,
which in turn is used only by column data storage .idf files and the special case of the RowNumber
column data .idf file.

2.4.3 Relationship Index

If a relationship between two tables in a tabular data model is defined, a relationship index is
generated. Tabular data models require that the key column in one of the tables be unique (many-
to-many relationships are not allowed). The relationship index file is generated for the table that is
on the "many" side of the relationship. An example of a generated relationship index file name for
the "many" table in the relationship is 73.R$Table1$c4047114-e5d3-4730-ab46-
478baf7ae64f.INDEX.0.idf. For an explanation of the interpretation of the substrings within the file
name, see section 2.2.

The relationship index file contains an array of integers. One integer exists in this file for each
unique value in the join column of the table on the "many" side of the relationship. The first integer
that is present in the file corresponds to the first unique value that is encountered, starting with the
first row, in the join column of the "many" table. The second integer corresponds to the second
unique value that is encountered in the join column, and so on. The integer value is the row number

in the other table of the relationship (the "one" table) to which the row is joined. Row numbering is
zero-based. If a row cannot be joined because no value match exists, the value –1 will appear in the

relationship index file.

The relationship index file is compressed by one of several methods, although it is always
compressed by using an XMRENoSplit compression method and does not XMHybridRLE compression.
For a discussion of the types of compression that are available to be used, see section 2.7.

It is necessary to reference the XML metadata file to understand and decode the contents of the
relationship index file. An example of a file name for the file that contains the metadata for the

relationship index file is R$Table1$c4047114-e5d3-4730-ab46-478baf7ae64f.73.tbl.xml. The
metadata for the relationship index column is found in the Columns collection of the
XMSimpleTable object in the file. In the Columns collection, the Column item that has the name
"INDEX" contains the metadata for this file. For an explanation of how to interpret the metadata file,
see section 2.5.

2.4.3.1 File Layout for Relationship Index File

A relationship index file can have one of two file format forms: that of either an .idf file or an .hidx
file. The relationship index file typically uses the same .idf file layout as the column data storage .idf
file, including the use of segments and segment layout (section 2.3.1.1). However, when the Pr

el
im

in
ar

y

73 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

relationship index file uses the .idf file format layout, differences from a column data storage .idf file
exist.

The relationship index .idf file is a system-generated file and never uses XMHybridRLE compression
but only XMRENoSplit compression. This fact also means that a relationship index file always has

one segment at a minimum and is never associated with a subsegment. The reason is that
subsegments are associated only with XMHybridRLE compression. which in turn is used only by
column data storage .idf files and the special case of the RowNumber column data .idf file.

Most of the time, the relationship index file uses the .idf file format. However, in some situations
when sparse relationship information exists (which means that very large gaps exist between the
column values with relationships), the relationship index file takes the form of an .hidx file (hash
index file).

For example, if only two values exist for the column, one with a value of 2 and the other with a
value of 5 billion, using an .idf file will generate rows for all the unused values between 2 and 5
billion. A hash table simply encodes the two key-value pairs of interest. The hash table encodes a
key-value pair with the column value (the data identifier) as the hash key, and the row number as

the hash value. For more information about the hash index file format file layout, see section 2.3.3.

2.4.4 User Hierarchy System-Generated Files

A tabular data model allows users to define hierarchies. A hierarchy is defined by its levels, where
one column in the source data contains the value for a particular level. For example, a common
hierarchy for geography has "Country/Region" at the top level, "State" at the next level down, and
"City" at the level below "State". In this case, a column in the source data table exists that contains
the value for each of the levels.

For each defined user hierarchy, the system generates four data files. These files consist of the child

count file (section 2.4.4.1), the first child position file (section 2.4.4.2), the multilevel identifier file
(section 2.4.4.3), and the parent position file (section 2.4.4.4). The integer values that appear in
these files require understanding an in-memory data structure that is formed by the system. Note
that this data structure is never materialized or seen by users.

A data structure is formed in which each combination of distinct values that actually exists at all of
the levels is represented by rows in a table. The table starts at the highest level and descends
through the levels. All row numbering that refers to the table is zero-based—that is, the first row is

row 0.

The first N rows in the table, which are numbered from 0 through (N – 1), consist of all the distinct
values at the highest level in the user hierarchy. The values are sorted by the collation for that
column. For example, if the highest level in the user hierarchy is "Country/Region", and the
countries that are present in the data are "United States" and "Canada", then row 0 in the table is
for "Canada" (the first item in sort order), and row 1 in the table is for "United States".

The next N rows in the table represent all the valid combinations of values that exist at the highest
level and at the next-highest level in the user hierarchy. For example, if the next-highest level is
"Area"; the United States has areas named "Northwest", "Northeast", "Southwest", and
"Southeast"; and Canada has areas named "East" and "West"; six rows in the table will exist to

represent the second level, and they are rows 2 through 7. Within each level, the values appear in
sorted order under their common parent level, and the parent levels remain in the originally sorted
order.

Therefore, for the first two levels in the example table, the rows of the in-memory table will be as
shown in the following table. Pr

el
im

in
ar

y

74 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Row Value

0 "Canada"

1 "United States"

2 "Canada-East"

3 "Canada-West"

4 "United States-Northeast"

5 "United States-Northwest"

6 "United States-Southeast"

7 "United States-Southwest"

The process just described is repeated recursively until valid combinations of items that exist at

each level of the user hierarchy are represented in the table.

2.4.4.1 User Hierarchy Child Count

Every user hierarchy has a child count file. An example of a generated user hierarchy child count file
name for a table that has the identifier "Table1" and a hierarchy that has the identifier "Geography"

is 8.U$Table1$Geography.CHILD_COUNT.0.idf. For an explanation of the interpretation of the
substrings within the file name, see section 2.2.

The user hierarchy child count file contains an array of integers. One integer exists in this file for
each row in the in-memory tabular structure (section 2.4.4) for the user hierarchy. The first integer
that is present in the file corresponds to row 0 of the table, the second integer corresponds to row 1,
and so on. The integer value represents the number of child items at the next level for the item in
the table row. For example, the item "Canada", row 0, has 2 child items, and the item "United

States", row 1, has 4 child items. So the first value in this example file is 2 (the number of child

items of the item "Canada"), and the second value is 4 (the number of child items of the item
"United States").

The user hierarchy child count file is compressed by one of several methods, although it is always
compressed by using an XMRENoSplit compression method and does not XMHybridRLE compression.
For a discussion of the types of compression that are available to be used, see section 2.7.

It is necessary to reference the XML metadata file to understand and decode the contents of the

user hierarchy child count file. An example of a file name for the file that contains the metadata for
the user hierarchy child count file is U$Table1$Geography.0.tbl.xml. The metadata for the child
count column is found in the Columns collection of the XMSimpleTable object in the file. In the
Columns collection, the Column item that has the name "CHILD_COUNT" contains the metadata
for this file. For an explanation of how to interpret the metadata file, see section 2.5.

2.4.4.1.1 File Layout for User Hierarchy Child Count

The user hierarchy child count file uses the same .idf file layout as the column data storage .idf file,
including the use of segments and segment layout (section 2.3.1.1.) However, differences exist.

The user hierarchy child count file is a system-generated file that never uses XMHybridRLE
compression but only XMRENoSplit compression. This fact also means that a user hierarchy child
count file always has one segment at a minimum and is never associated with a subsegment, Pr

el
im

in
ar

y

75 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

because subsegments are associated only with XMHybridRLE compression, which in turn is used only
by column data storage .idf files and the special case of the RowNumber column data .idf file.

2.4.4.2 User Hierarchy First Child Position

Every user hierarchy has a first child position file. An example of a generated user hierarchy first
child position file name for a table that has the identifier "Table1" and a hierarchy that has the
identifier "Geography" is 8.U$Table1$Geography.FIRST_CHILD_POS.0.idf. For an explanation of the
interpretation of the substrings within the file name, see section 2.2.

The user hierarchy first child position file contains an array of integers. One integer exists in this file
for each row in the in-memory tabular structure (section 2.4.4) for the user hierarchy. The first
integer that is present in the file corresponds to row 0 of the table, the second integer corresponds

to row 1, and so on. The integer value is the row number of the row in the in-memory tabular
structure that contains the first child of the item on this row. In the example, the first row, row 0,
"Canada", has its first child at row 2, "Canada-East", so the first value in the file is 2. The second
row of the table, row 1, "United States", has its first child in row 4, "United States-Northeast", so
the second value in the file in this example is 4.

The user hierarchy first child position file is compressed by one of several methods, although it is

always compressed by using an XMRENoSplit compression method and does not use XMHybridRLE
compression. For a discussion of the types of compression that are available to be used, see section
2.7.

It is necessary to reference the XML metadata file to understand and decode the contents of the
user hierarchy first child position file. An example of a file name for the file that contains the
metadata for the user hierarchy first child position file is U$Table1$Geography.0.tbl.xml. The
metadata for the first child position column is found in the Columns collection of the

XMSimpleTable object in the file. In the Columns collection, the Column item that has the name
"FIRST_CHILD_POS" contains the metadata for this file. For an explanation of how to interpret the
metadata file, see section 2.5.

2.4.4.2.1 File Layout for User Hierarchy First Child Position

The user hierarchy first child position file uses the same .idf file layout as the column data storage
.idf file, including the use of segments and segment layout (section 2.3.1.1.) However, differences

exist.

The user hierarchy first child position file is a system-generated file and never uses XMHybridRLE
compression but only XMRENoSplit compression. This fact also means that a user hierarchy first
child position file always has one segment at a minimum and is never associated with a
subsegment, because subsegments are associated only with XMHybridRLE compression, which in
turn is used only by column data storage .idf files and the special case of the RowNumber column

data .idf file.

2.4.4.3 User Hierarchy Multilevel Identifier

Every user hierarchy has a multilevel identifier file. An example of a generated user hierarchy
multilevel identifier file name for a table that has the identifier "Table1" and a hierarchy that has the

identifier "Geography" is 8.U$Table1$Geography.MULTI_LEVEL_ID.0.idf. For an explanation of the
interpretation of the substrings within the file name, see section 2.2.

The user hierarchy multilevel identifier file contains an array of integers. One integer exists in this
file for each row in the in-memory tabular structure, which is described in section 2.4.4, for the user Pr

el
im

in
ar

y

76 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

hierarchy. The first integer that is present in the file corresponds to Row 0 of the table, the second
integer corresponds to Row 1, and so on.

The integer value in the file is the data identifier value that represents the data value at the lowest
level represented on the table row. In the example, Row 0 is "Canada" so the integer value is the

data identifier for "Canada" in the "Country/Region" column. Row 1 is "United States" so the next
integer value in this file is the data identifier for "United States" in the "Country/Region" column.
Row 2 is for "Canada-East" so the item at the lowest level represented in that table row is "East",
and the third integer is the data identifier value for the item "East" in the "Area" column.

The user hierarchy multilevel identifier file is compressed by one of several methods, although it is
always compressed by using an XMRENoSplit compression method and does not use XMHybridRLE
compression. For a discussion of the types of compression that are available to be used, see section

2.7.

It is necessary to reference the XML metadata file to understand and decode the contents of the
user hierarchy multilevel identifier file. An example of a file name for the file that contains the
metadata for the user hierarchy multilevel identifier file is U$Table1$Geography.0.tbl.xml. The

metadata for the multilevel identifier column is found in the Columns collection of the
XMSimpleTable object in the file. In the Columns collection, the Column item that has the name

"MULTI_LEVEL_ID" contains the metadata for this file. For an explanation of how to interpret the
metadata file, see section 2.5.

2.4.4.3.1 File Layout for User Hierarchy Multilevel Identifier

The user hierarchy multilevel identifier file uses the same .idf file layout as the column data storage
.idf file, including the use of segments and segment layout (see section 2.3.1.1.) However,
differences exist.

The user hierarchy multilevel identifier file is a system-generated file that never uses XMHybridRLE
compression but only XMRENoSplit compression. This fact also means that a user hierarchy
multilevel identifier file always has one segment at a minimum and is never associated with a
subsegment, because subsegments are associated only with XMHybridRLE compression, which in
turn is used only by column data storage .idf files and the special case of the RowNumber column

data .idf file.

2.4.4.4 User Hierarchy Parent Position

Every user hierarchy has a parent position file. An example of a generated user hierarchy parent
position file name for a table that has the identifier "Table1" and a hierarchy that has the identifier
"Geography" is 8.U$Table1$Geography.PARENT_POS.0.idf. For an explanation of the interpretation
of the substrings within the file name, see section 2.2.

The user hierarchy parent position file contains an array of integers. One integer exists in this file for

each row in the in-memory tabular structure, which is described in section 2.4.4, for the user
hierarchy. The first integer that is present in the file corresponds to Row 0 of the table, the second
integer corresponds to Row 1, and so on.

The integer value in the file is the row number in the table that contains the parent item of the item

in the table row. In the example, the first two rows are items at the highest level of the user
hierarchy. Therefore, neither has a parent item and this fact is represented by the value –1. So the
first two values in the file in this example are each –1. The next row in the table has the item

"Canada-East". The parent item of "Canada-East" is "Canada". "Canada" is at Row 0 in the table, so
in this example, the third value in the file is zero. Pr

el
im

in
ar

y

77 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The user hierarchy parent position file is compressed by one of several methods, although it is
always compressed by using an XMRENoSplit compression method and does not use XMHybridRLE

compression. For a discussion of the types of compression available to be used, see section 2.7.

It is necessary to reference the XML metadata file to understand and decode the contents of the

user hierarchy parent position file. An example of a file name for the file that contains the metadata
for the user hierarchy parent position file is U$Table1$Geography.0.tbl.xml. The metadata for the
parent position column is found in the Columns collection of the XMSimpleTable object in the file.
In the Columns collection, the Column item that has the name "PARENT_POS" contains the
metadata for this file. For an explanation of how to interpret the metadata file, see section 2.5.

2.4.4.4.1 File Layout for User Hierarchy Parent Position

The user hierarchy parent position file uses the same .idf file layout as the column data storage .idf
file, including the use of segments and segment layout (see section 2.3.1.1.) However, differences
exist.

The user hierarchy parent position file is a system-generated file that never uses XMHybridRLE

compression but only XMRENoSplit compression. This fact also means that a user hierarchy parent
position file always has one segment at a minimum and is never associated with a subsegment,

because subsegments are associated only with XMHybridRLE compression, which in turn is used only
by column data storage .idf files and the special case of the RowNumber column data .idf file.

2.5 Metadata Files

The system stores metadata in XML files. The following sections describe the XML files by using XML
schema definition (XSD) fragments. For the general XSD fragment for any XMObject element,
see section 2.5.1. For the XSD fragment for each XMObject element based on its specific class

attribute value, see section 2.5.2. All the types that are referenced in the text in the metadata
sections use XML Schema types, as specified in [XMLSCHEMA1] and [XMLSCHEMA2].

2.5.1 XMObject Document Node Element

The table metadata file, the table relationship metadata file, and the column data metadata files all
have an XMObject element as the document root node. The XMObject element is a general
element that contains an object that is used to represent objects of many different classes in the

XML metadata files.

The general XSD fragment for the XMObject element is defined in this section. Because the
XMObject element is used to represent many different types of objects, its XSD fragment contains
a reference to xs:any and is therefore very general. Additional sections are provided that provide a

more-specific complex type definition for the XMObject element when its class attribute contains a
known value. For the XSD fragment for each XMObject element when the class is known, see
section 2.5.2.

<xs:element name="XMObject" type="XMObjectType"/>

<xs:complexType name="XMObjectType">

 <xs:all>

 <xs:element name="Properties" type="XMObjectPropertiesType" minOccurs="0"/>

 <xs:element name="Members" type="XMObjectMembersType" minOccurs="0"/>

 <xs:element name="Collections" type="XMObjectCollectionsType" minOccurs="0"/>

 <xs:element name="DataObjects" type="XMObjectDataObjectsType" minOccurs="0"/>

 </xs:all>

 <xs:attribute name="class" type="XMObjectClassNameEnum"/>

 <xs:attribute name="name" type="xs:string"/> Pr
el
im

in
ar

y

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90610

78 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <xs:attribute name="ProviderVersion" type="xs:int"/>

</xs:complexType>

Properties: An element that contains content described as xs:any. Depending on the class of the

XMObject element, the actual content allowed is constrained, as specified in section 2.5.2.

Members: A collection of Member items of type XMObjectMemberType for the XMObject
element. The Member items allowed for a specific XMObject element are constrained, as specified

in section 2.5.2, depending on the value of the class attribute.

Collections: A collection of Collection items of type XMObjectCollectionType for the XMObject
element. The Collection items allowed for a specific XMObject element are constrained, as
specified in section 2.5.2, depending on the value of the class attribute.

DataObjects: A collection of DataObject items of type XMDataObject for the XMObject element.
The DataObject items allowed in the collection for a particular XMObject element are constrained,
as specified in section 2.5.2, depending on the value of the class attribute.

class: An enumeration value that specifies the class of the XMObject element.

name: A string that specifies the object name.

ProviderVersion: An integer that specifies the version of the provider that wrote the object.

2.5.1.1 XMObjectPropertiesType

The XMObjectPropertiesType complex type holds the properties for an instance of an XMObject

object.

The XSD fragment presented in this section is general and covers the definition of all element
instances of type XMObjectPropertiesType. However, when the class attribute value of the
containing XMObject element is known, the content of an element of type
XMObjectPropertiesType is more constrained than indicated by the definition contained in this

section. For the constrained definitions, see section 2.5.2.

<xs:complexType name="XMObjectPropertiesType">

 <xs:sequence>

 <xs:any minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

xs:any: Any element as content.

2.5.1.2 XMObjectMembersType

The XMObjectMembersType complex type holds a collection of Member items for an instance of
an XMObject object. Each Member item represents a property of the XMObject instance, but a
Member item can contain complex content, whereas XMObjectPropertiesType (section 2.5.1.1)

holds elements of a simple type.

The XSD fragment presented in this section is general and covers the definition of all element

instances of type XMObjectMembersType. However, when the class attribute value of the
containing XMObject element is known, the content of an element of type Pr

el
im

in
ar

y

79 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

XMObjectMembersType is more constrained than indicated by the definition contained in this
section. For the constrained definitions, see section 2.5.2.

<xs:complexType name="XMObjectMembersType">

 <xs:sequence>

 <xs:element name="Member" type="XMObjectMemberType" maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

Member: A property of the XMObject instance that can contain complex content. In the general
case, any Member can be contained in the collection of Member objects. However, the content of

specific instances of the XMObjectMembersType type is constrained depending on the value of the
class attribute of the containing XMObject element.

2.5.1.3 XMObjectCollectionsType

The XMObjectCollectionsType complex type holds collections of complex properties that pertain

to the parent XMObject instance. Each Collection item represents a property of the XMObject
instance. The collection can contain multiple instances of the same Collection item, and each

instance can contain complex content. An example is a table, which can contain multiple column
items in a collection.

The XSD fragment presented in this section is general and covers the definition of all element
instances of type XMObjectCollectionsType. However, when the class attribute value of the
containing XMObject element is known, the content of an element of type
XMObjectCollectionsType is more constrained than indicated by the definition contained in this
section. For the constrained definitions, see section 2.5.2.

<xs:complexType name="XMObjectCollectionsType">

 <xs:sequence>

 <xs:element name="Collection" type="XMObjectCollectionType"

 maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

Collection: A property of the XMObject instance, which can contain multiple instances of the same

property, and in which each instance can contain complex content. In the general case, any
Collection can be contained in the collection of Collection objects. However, the content of specific
instances of the XMObjectCollectionsType type is constrained depending on the value of the
class attribute of the containing XMObject element.

2.5.1.4 XMObjectDataObjectsType

The XMObjectDataObjectsType complex type holds data objects for the parent XMObject

instance. Each DataObject object in the collection represents a data object of the parent XMObject
instance.

The XSD fragment presented in this section is general and covers the definition of all element

instances of type XMObjectDataObjectsType. However, when the class attribute value of the
containing XMObject element is known, the content of an element of type
XMObjectDataObjectsType is more constrained than indicated by the definition contained in this
section. For the constrained definitions, see section 2.5.2.

<xs:complexType name="XMObjectDataObjectsType"> Pr
el
im

in
ar

y

80 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <xs:sequence>

 <xs:element name="DataObject" type="XMObjectDataObjectType"

 maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

DataObject: A data object that is related to the XMObject instance. In the general case, any

DataObject can be contained in the collection of DataObjects. However, the content of specific
instances of the XMObjectDataObjectsType type are constrained depending on the value of the
class attribute of the containing XMObject element.

2.5.1.5 XMObjectMemberType

The XMObjectMemberType complex type holds properties for one Member item of a parent
XMObject instance. The properties for the member are held within another instance of an
XMObject element that is nested within the Member element.

The XSD fragment presented in this section is general and covers the definition of all element
instances of type XMObjectMemberType. However, when the class attribute value of the

containing XMObject element is known, the content of an element of type XMObjectMemberType
is more constrained than indicated by the definition contained in this section. For the constrained
definitions, see section 2.5.2.

<xs:complexType name="XMObjectMemberType">

 <xs:all>

 <xs:element name="Name" type="XMObjectMemberNameEnum" />

 <xs:element name="XMObject" type="XMObjectType" minOccurs="0"/>

 </xs:all>

</xs:complexType>

Name: An enumeration value that specifies the name of the Member item.

XMObject: A nested instance of an XMObject element. The XMObject element contains the
properties, members, collections, and data objects for the Member instance that has the name
specified by the Name element.

2.5.1.6 XMObjectCollectionType

The XMObjectCollectionType complex type holds the data for one collection item of a parent
XMObject instance. The properties for each item in the collection are held within another instance
of an XMObject element that is nested within the Collections element.

The XSD fragment presented in this section is general and covers the definition of all element
instances of type XMObjectCollectionType. However, when the class attribute value of the
containing XMObject element is known, the content of an element of type

XMObjectCollectionType is more constrained than indicated by the definition contained in this
section. For the constrained definitions, see section 2.5.2.

<xs:complexType name="XMObjectCollectionType">

 <xs:sequence>

 <xs:element name="Name" type="XMObjectCollectionNameEnum" />

 <xs:element name="XMObject" type="mstns:XMObjectType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence> Pr
el
im

in
ar

y

81 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

</xs:complexType>

Name: An enumeration value that specifies the name of the Collection item.

XMObject: A nested instance of an XMObject element. The XMObject element contains the
properties, members, collections, and data objects for the Collection object that has the name
specified by the Name element.

2.5.1.7 XMObjectDataObjectType

The XMObjectDataObjectType complex type holds the data for one data object item in the

collection of data objects for the parent XMObject instance. The properties for each item in the
collection are held within another instance of an XMObject element that is nested within the
DataObject element.

The XSD fragment presented in this section is general and covers the definition of all element
instances of type XMObjectDataObjectType. However, when the class attribute value of the

containing XMObject element is known, the content of an element of type
XMObjectDataObjectType is more constrained than indicated by the definition contained in this

section. For the constrained definitions, see section 2.5.2.

<xs:complexType name="XMObjectDataObjectType">

 <xs:all>

 <xs:element name="XMObject" type="XMObjectType"/>

 </xs:all>

</xs:complexType>

XMObject: A nested instance of an XMObject element, which contains the properties, members,

collections, and data objects for a data object item in the collection of data objects.

2.5.1.8 XMObjectMemberNameEnum

The XMObjectMemberNameEnum simple type enumerates the allowed values for the name of a
Member item in the Members collection of an XMObject object.

<xs:simpleType name="XMObjectMemberNameEnum">

 <xs:restriction base="xs:string">

 <xs:enumeration value="SegmentMap"/>

 <xs:enumeration value="TableStats"/>

 <xs:enumeration value="ColumnStats"/>

 <xs:enumeration value="SubSegment"/>

 <xs:enumeration value="CompressionInfo"/>

 <xs:enumeration value="ColumnSegmentStats"/>

 <xs:enumeration value="IntrinsicHierarchy"/>

 <xs:enumeration value="SubCompression"/>

 <xs:enumeration value="RLECompression"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the XMObjectMemberNameEnum type. Pr
el
im

in
ar

y

82 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Enumeration value Description

"SegmentMap" The member contains a segment map.

"TableStats" The member contains table statistics.

"ColumnStats" The member contains column statistics.

"SubSegment" The member contains information for a subsegment.

"CompressionInfo" The member contains information about compression.

"ColumnSegmentStats" The member contains column segment statistics.

"IntrinsicHierarchy" The member contains information about an intrinsic hierarchy.

"SubCompression" The member contains information about subcompression.

"RLECompression" The member contains information about RLE compression.

2.5.1.9 XMObjectCollectionNameEnum

The XMObjectCollectionNameEnum simple type enumerates the allowed values for the name of a
Collection item in the Collections collection of an XMObject object.

<xs:simpleType name="XMObjectCollectionNameEnum">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Columns"/>

 <xs:enumeration value="Segments"/>

 <xs:enumeration value="Partitions"/>

 <xs:enumeration value="Relationships"/>

 <xs:enumeration value="UserHierarchies"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the XMObjectCollectionNameEnum type.

Enumeration

value Description

"Columns" The Collection item contains a collection of Column items. Each Column item
represents a column in the source data table.

"Segments" The Collection item contains a collection of Segment items. Each Segment item
represents a segment of the rows of a column in the source data.

"Partitions" The Collection item contains a collection of Partition items. Only one partition is
supported.

"Relationships" The Collection item contains a collection of Relationship items. Each

Relationship item describes a join relationship.

"UserHierarchies" The Collection item contains a collection of user-defined hierarchies. Each
UserHierarchy item describes a user-defined hierarchy. Pr
el
im

in
ar

y

83 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.1.10 XMObjectClassNameEnum

The XMObjectClassNameEnum simple type enumerates the allowed values for the class attribute
of an XMObject element. The content allowed in an instance of an XMObject element depends on

the value of this attribute.

<xs:simpleType name="XMObjectClassNameEnum">

 <xs:restriction base="xs:string">

 <xs:enumeration value="XMSimpleTable"/>

 <xs:enumeration value="XMRawColumn"/>

 <xs:enumeration value="XMRelationship"/>

 <xs:enumeration value="XMRelationshipIndexSparseDIDs"/>

 <xs:enumeration value="XMRelationshipIndexDenseDIDs"/>

 <xs:enumeration value="XMHierarchy"/>

 <xs:enumeration value="XMUserHierarchy"/>

 <xs:enumeration value="XMHierarchyDataID2PositionHashIndex"/>

 <xs:enumeration value="XMColumnSegment"/>

 <xs:enumeration value="XMPartition"/>

 <xs:enumeration value="XMMultiPartSegmentMap"/>

 <xs:enumeration value="XMSegment1Map"/>

 <xs:enumeration value=

 "XMSegmentEqualMapEx<XMSegmentEqualMap_FastInstantiation>"/>

 <xs:enumeration value=

 "XMSegmentEqualMapEx<XMSegmentEqualMap_ComplexInstantiation>"/>

 <xs:enumeration value="XMTableStats"/>

 <xs:enumeration value="XMColumnSegmentStats"/>

 <xs:enumeration value="XMColumnStats"/>

 <xs:enumeration value="XMValueDataDictionary<XM_Long>"/>

 <xs:enumeration value="XMValueDataDictionary<XM_Real>"/>

 <xs:enumeration value="XMHashDataDictionary<XM_Real>"/>

 <xs:enumeration value="XMHashDataDictionary<XM_Long>"/>

 <xs:enumeration value="XMHashDataDictionary<XM_String>"/>

 <xs:enumeration value="XMHashDataDictionary<XMVariantPtr>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<1>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<2>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<3>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<4>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<5>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<6>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<7>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<8>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<9>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<10>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<12>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<16>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<21>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<32>"/>

 <xs:enumeration value="XM123CompressionInfo"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<1>>"

 />

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<2>>"

 />

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<3>>"

 />

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<4>>" Pr
el
im

in
ar

y

84 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 />

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<5>>"

 />

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<6>>"

 />

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<7>>"

 />

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<8>>"

 />

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<9>>"

 />

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<10>>"

 />

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<12>>"

 />

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<16>>"

 />

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<21>>"

 />

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<32>>"

 />

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XM123CompressionInfo>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMREGeneralCompressionInfo>"/>

 <xs:enumeration value="XMRawColumnPartitionDataObject"/>

 <xs:enumeration value="XMRLECompressionInfo"/>

 <xs:enumeration value="XMRLEGeneralCompressionInfo"/>

 <xs:enumeration value="XMColumnSegmentDataObject"/>

 <xs:enumeration value="XMRelationshipIndex123DIDs"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the XMObjectClassNameEnum type.

Enumeration value Description

"XMSimpleTable" The object specifies the
metadata for a table.

"XMRawColumn" The object specifies the
metadata for a column.

"XMRelationship" The object specifies the
metadata for a relationship
between two tables.

"XMRelationshipIndexSparseDIDs" The object specifies the Pr
el
im

in
ar

y

85 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Enumeration value Description

metadata for a relationship
index in which the data
identifiers are sparse.

"XMRelationshipDenseDIDs" The object specifies the
metadata for a relationship in
which the data identifiers are
dense.

"XMHierarchy" The object specifies the
metadata for a hierarchy.

"XMUserHierarchy" The object specifies the
metadata for a user hierarchy.

"XMHierarchyDataID2PositionHashIndex" The object specifies the

metadata for a hash index of
data identifier–to–position
mapping.

"XMColumnSegment" The object specifies the
metadata for a column
segment.

"XMPartition" The object specifies the
metadata for a partition.

"XMultiPartSegmentMap" The object specifies the
metadata for a segment map
associated with partitions.

"XMSegment1Map" The object specifies the
metadata for a segment map
for a column with a single
segment.

"XMSegmentEqualMapEx<XMSegmentEqualMap_FastInstantiation" The object specifies the
metadata for a segment map of
equally sized segments (except
that the size of the last segment
can differ from that of the
others). Note that fast
instantiation is for
predetermined segment sizes.

"XMSegmentEqualMapEx<XMSegmentEqualMap_ComplexInstantiation" The object specifies the
metadata for a segment map of
equally sized segments (except
that the size of the last segment
can differ from that of the
others). Note that complex
instantiation occurs when the
segment size is determined at
run time.

"XMTableStats" The object specifies the
metadata for table statistics.

"XMColumnStats" The object specifies the Pr
el
im

in
ar

y

86 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Enumeration value Description

metadata for column statistics.

"XMColumnSegmentStats" The object specifies the
metadata for column segment
statistics.

"XMValueDataDictionary<XM_Long>" The object specifies the
metadata for a value dictionary
for values of type long.

"XMValueDataDictionary<XM_Real>" The object specifies the
metadata for a value dictionary
for values of type real.

"XMHashDataDictionary<XM_Real>" The object specifies the
metadata for a hash dictionary

for values of type real.

"XMHashDataDictionary<XM_Long>" The object specifies the
metadata for a hash dictionary
for values of type long.

"XMHashDataDictionary<XM_String>" The object specifies the
metadata for a hash dictionary
for values of type string.

"XMRENoSplitCompressionInfo<1>" The object specifies the
metadata for NoSplit
compression of 1 bit in length.

"XMRENoSplitCompressionInfo<2>" The object specifies the
metadata for NoSplit
compression of 2 bits in length.

"XMRENoSplitCompressionInfo<3>" The object specifies the
metadata for NoSplit

compression of 3 bits in length.

"XMRENoSplitCompressionInfo<4>" The object specifies the
metadata for NoSplit
compression of 4 bits in length.

"XMRENoSplitCompressionInfo<5>" The object specifies the
metadata for NoSplit
compression of 5 bits in length.

"XMRENoSplitCompressionInfo<6>" The object specifies the
metadata for NoSplit
compression of 6 bits in length.

"XMRENoSplitCompressionInfo<7>" The object specifies the
metadata for NoSplit
compression of 7 bits in length.

"XMRENoSplitCompressionInfo<8>" The object specifies the
metadata for NoSplit

compression of 8 bits in length.

"XMRENoSplitCompressionInfo<9>" The object specifies the
metadata for NoSplit Pr

el
im

in
ar

y

87 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Enumeration value Description

compression of 9 bits in length.

"XMRENoSplitCompressionInfo<10>" The object specifies the
metadata for NoSplit
compression of 10 bits in
length.

"XMRENoSplitCompressionInfo<12>" The object specifies the
metadata for NoSplit
compression of 12 bits in
length.

"XMRENoSplitCompressionInfo<16>" The object specifies the
metadata for NoSplit
compression of 16 bits in
length.

"XMRENoSplitCompressionInfo<21>" The object specifies the
metadata for NoSplit
compression of 21 bits in
length.

"XMRENoSplitCompressionInfo<32>" The object specifies the
metadata for NoSplit
compression of 32 bits in
length.

"XM123CompressionInfo" The object specifies the
metadata for 123 compression.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<1>>"

The object specifies the
metadata for hybrid NoSplit
compression of 1 bit in length.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<2>>"

The object specifies the
metadata for hybrid NoSplit
compression of 2 bits in length.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<3>>"

The object specifies the
metadata for hybrid NoSplit
compression of 3 bits in length.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<4>>"

The object specifies the
metadata for hybrid NoSplit
compression of 4 bits in length.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<5>>"

The object specifies the
metadata for hybrid NoSplit
compression of 5 bits in length.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<6>>"

The object specifies the
metadata for hybrid NoSplit
compression of 6 bits in length.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<7>>"

The object specifies the
metadata for hybrid NoSplit
compression of 7 bits in length.

"XMHybridRLECompressionInfo<class The object specifies the
metadata for hybrid NoSplit Pr

el
im

in
ar

y

88 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Enumeration value Description

XMRENoSplitCompressionInfo<8>>" compression of 8 bits in length.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<9>>"

The object specifies the
metadata for hybrid NoSplit
compression of 9 bits in length.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<10>>"

The object specifies the
metadata for hybrid NoSplit
compression of 10 bits in
length.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<12>>"

The object specifies the
metadata for hybrid NoSplit
compression of 12 bits in
length.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<16>>"

The object specifies the
metadata for hybrid NoSplit
compression of 16 bits in
length.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<21>>"

The object specifies the
metadata for hybrid NoSplit
compression of 21 bits in
length.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<32>>"

The object specifies the
metadata for hybrid NoSplit
compression of 32 bits in
length.

"XMHybridRLECompressionInfo<class XMRE123CompressionInfo>" The object specifies the
metadata for hybrid 123
compression.

"XMHybridRLECompressionInfo<class XMREGeneralCompressionInfo>" The object specifies the
metadata for hybrid General
compression.

"XMRawColumnPartitionDataObject" The object specifies the
metadata for a partition.

"XMRLECompressionInfo" The object specifies the
metadata for RLE compression.

"XMColumnSegmentDataObject" The object specifies the
metadata for a data object for a
column segment.

"XMRLEGeneralCompressionInfo" The object specifies the
metadata for general RLE
compression.

Pr
el
im

in
ar

y

89 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2 XMObject Definitions by class Attribute

The general definition of the XMObject element is specified in section 2.5.1. This section contains
more-specific definitions for the content of an XMObject element, according to each available value
of the class attribute on the XMObject element.

2.5.2.1 XMObject class="XMSimpleTable"

When the class attribute value for the XMObject element is "XMSimpleTable", the XMObject
element contains the metadata for a table object, and the type of the XMObject element is
XMSimpleTableXMObjectType.

<xs:complexType name="XMSimpleTableXMObjectType">

 <xs:all>

 <xs:element name="Properties" type="XMSimpleTablePropertiesType"/>

 <xs:element name="Members" type="XMSimpleTableMembersType"/>

 <xs:element name="Collections" type="XMSimpleTableCollectionsType"/>

 </xs:all>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMSimpleTable">

 </xs:attribute>

</xs:complexType>

Properties: The property values for the XMSimpleTable object.

Members: A collection of Member complex type items, each of which contains a complex property

for the XMSimpleTable object.

Collections: A collection of Collection complex type items, each of which contains a complex
property for the XMSimpleTable object. The Collection complex property can be repeated multiple
times.

name: The name of the XMSimpleTable object instance.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.1.1 XMSimpleTablePropertiesType

The XMSimpleTablePropertiesType complex type holds the specific properties that are allowed
when the XMObject element is of class "XMSimpleTable".

<xs:complexType name="XMSimpleTablePropertiesType">

 <xs:all>

 <xs:element name="Version" type="xs:int"/>

 <xs:element name="Settings">

 <xs:simpleType>

 <xs:restriction base="xs:long">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="4367"/> Pr
el
im

in
ar

y

90 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="RIViolationCount" type="xs:long"/>

 </xs:all>

</xs:complexType>

Version: The internal version number for this data. This version number is not required to match

the version numbers of other objects within the same table or column.

Settings: A mask that describes settings for the table. The bits that are listed in the following table
can be set.

Bit Meaning

0x1 The table contains normal data.

0x2 The table contains an index.

0x3 The table has temporary content.

0x4 The table has an intrinsic hierarchy.

0x5 The table has a user hierarchy.

0x100 The table has been processed.

0x1000 The table uses an automatic NULL for an unknown member.

RIViolationCount: The number of relational integrity violations in the XMSimpleTable object.

2.5.2.1.2 XMSimpleTableMembersType

The XMSimpleTableMembersType complex type holds a collection of Member items, each of

which contains a property for the parent XMSimpleTable object.

<xs:complexType name="XMSimpleTableMembersType">

 <xs:sequence>

 <xs:element name="Member" type="XMSimpleTableMemberType"

 minOccurs="2" maxOccurs="2"/>

 </xs:sequence>

</xs:complexType>

Member: A complex type element that contains a property for the parent XMObject element of
class "XMSimpleTable". The value of the Name element for the two instances of this element in the

Members collection MUST have one instance of each enumeration value from the
XMSimpleTableMemberNameEnum type (section 2.5.2.1.2.2).

2.5.2.1.2.1 XMSimpleTableMemberType

The XMSimpleTableMemberType complex type holds a Member item, which contains a property
of the parent XMSimpleTable object.

<xs:complexType name="XMSimpleTableMemberType">

 <xs:sequence> Pr
el
im

in
ar

y

91 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <xs:element name="Name" type="XMSimpleTableMemberNameEnum"

 minOccurs="0"/>

 <xs:element name="XMObject">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="XMObjectTypeBase">

 <xs:attribute name="class"

 type="XMSimpleTableXMObjectMemberClassNameEnum"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

Name: The name of the Member object.

XMObject: A complex type that contains a nested instance of an XMObject element. The type of

the element is an extension of XMObjectTypeBase. However, the actual content allowed in an
instance is constrained and depends on the value of the class attribute of the XMObject element.
The content of the XMObject element MUST follow the constraints depending on its class attribute
value.

class: An enumeration value that specifies the class name of this XMObject element instance.
When the Name element of the Member item has a particular value, the XMObject element of the
Member item MUST have a specific value for the class attribute. The following table lists the
constraints between the values of Name and class.

Value of Name element Required value of class attribute

"SegmentMap" One of the following:

"XMMultiPartSegmentMap"

"XMSegment1Map"

"XMSegmentEqualMapEx<XMSegmentEqualMap_ComplexInstantiation>"

"TableStats" "XMTableStats"

2.5.2.1.2.2 XMSimpleTableMemberNameEnum

The XMSimpleTableMemberNameEnum simple type enumerates the allowed values for the name
of a Member item in the Members collection of an XMSimpleTable object.

<xs:simpleType name="XMSimpleTableMemberNameEnum">

 <xs:restriction base="XMObjectMemberNameEnum">

 <xs:enumeration value="SegmentMap"/>

 <xs:enumeration value="TableStats"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the XMSimpleTableMemberNameEnum

type. Pr
el
im

in
ar

y

92 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Enumeration value Description

"SegmentMap" The Member item is a segment map.

"TableStats" The Member item contains table statistics.

2.5.2.1.2.3 XMSimpleTableXMObjectMemberClassNameEnum

The XMSimpleTableXMObjectMemberClassNameEnum simple type enumerates the allowed
values for the class name of the XMObject element that is contained in a Member item in the
Members collection of an XMSimpleTable object.

<xs:simpleType name="XMSimpleTableXMObjectMemberClassNameEnum">

 <xs:restriction base="XMObjectClassNameEnum">

 <xs:enumeration value="XMMultiPartSegmentMap"/>

 <xs:enumeration value="XMSegment1Map"/>

 <xs:enumeration value=

 "XMSegmentEqualMapEx<XMSegmentEqualMap_ComplexInstantiation>"/>

 <xs:enumeration value=

 "XMSegmentEqualMapEx<XMSegmentEqualMap_FastInstantiation>"/>

 <xs:enumeration value="XMTableStats"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the
XMSimpleTableXMObjectMemberClassNameEnum type.

Enumeration value Description

"XMMultiPartSegmentMap" The object contains a multipart
segment map, which is a
segment map that is built on
top of other segment maps.

"XMSegment1Map" The object contains a segment
map for a column that has just
one segment.

"XMSegmentEqualMapEx<XMSegmentEqualMap_ComplexInstantiation>" The object contains a segment
map for equally sized
segments. Complex
instantiation occurs when the
actual segment size is
determined at run time.

"XMSegmentEqualMapEx<XMSegmentEqualMap_FastInstantiation>" The object contains a segment
map for equally sized
segments. Fast instantiation
occurs when the actual
segment size is determined at
creation time.

"XMTableStats" The object contains table
statistics. Pr

el
im

in
ar

y

93 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.1.3 XMSimpleTableCollectionsType

The XMSimpleTableCollectionsType complex type holds a collection of Collection items, each of
which contains a property for the parent XMSimpleTable object. Collection items can be repeated

multiple times within the collection.

<xs:complexType name="XMSimpleTableCollectionsType">

 <xs:sequence>

 <xs:element name="Collection" type="XMSimpleTableCollectionType"

 minOccurs="4" maxOccurs="4"/>

 </xs:sequence>

</xs:complexType>

Collection: A complex type element that contains a Collection item, which contains a property for

the parent XMObject element of class XMSimpleTable. Collection items can be repeated within
the collection.

The value of the Name element for the four instances of this element in the Collections collection
MUST have one instance of each enumeration value from the
XMSimpleTableCollectionNameEnum type (section 2.5.2.1.3.2).

2.5.2.1.3.1 XMSimpleTableCollectionType

The XMSimpleTableCollectionType complex type holds a Collection item, which contains a
property of the parent XMSimpleTable object.

<xs:complexType name="XMSimpleTableCollectionType">

 <xs:sequence>

 <xs:element name="Name" type="XMSimpleTableCollectionNameEnum"/>

 <xs:element name="XMObject" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="XMObjectTypeBase">

 <xs:attribute name="class"

 type="XMSimpleTableXMObjectCollectionClassNameEnum"/>

 <xs:attribute name="name" type="xs:string"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

Name: The name of the Collection object.

XMObject: A complex type that contains a nested instance of an XMObject element. The type of

the element is an extension of XMObjectTypeBase. However, the actual content that is allowed
depends on the value of the class attribute of the XMObject element instance.

The following attributes are added by extension for the XMObject element.

class: An enumeration value that specifies the class name of this XMObject element. When the
Name element of the Collection item has a particular value, the XMObject element of the
Collection item MUST have a specific value for the class attribute. The following table lists the

constraints between the values of Name and class. Pr
el
im

in
ar

y

94 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Value of Name element Required value of class attribute

"Partitions" "XMPartition"

"Columns" "XMRawColumn"

"Relationships" "XMRelationship"

"UserHierarchies" "XMUserHierarchy"

name: The name of the Collection item.

2.5.2.1.3.2 XMSimpleTableCollectionNameEnum

The XMSimpleTableCollectionNameEnum simple type enumerates the allowed values for the
name of a Member item in the Collections collection of an XMSimpleTable object.

<xs:simpleType name="XMSimpleTableCollectionNameEnum">

 <xs:restriction base="XMObjectCollectionNameEnum">

 <xs:enumeration value="Partitions"/>

 <xs:enumeration value="Columns"/>

 <xs:enumeration value="Relationships"/>

 <xs:enumeration value="UserHierarchies"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the XMSimpleTableCollectionNameEnum

type.

Enumeration value Description

"Partitions" Collection is a collection of items that pertain to each partition.

"Columns" Collection is a collection of items that pertain to each column.

"Relationships" Collection is a collection of items that pertain to relationships for the table.

"UserHierarchies" Collection is a collection of items that pertain to user-defined hierarchies.

2.5.2.1.3.3 XMSimpleTableXMObjectCollectionClassNameEnum

The XMSimpleTableXMObjectCollectionClassNameEnum simple type enumerates the allowed
values for the class name of the XMObject element that is contained in a Collection item in the

Collections collection of an XMSimpleTable object.

<xs:simpleType name="XMSimpleTableXMObjectCollectionClassNameEnum">

 <xs:restriction base="XMObjectClassNameEnum">

 <xs:enumeration value="XMPartition"/>

 <xs:enumeration value="XMRawColumn"/>

 <xs:enumeration value="XMRelationship"/>

 <xs:enumeration value="XMUserHierarchy"/>

 </xs:restriction>

</xs:simpleType> Pr
el
im

in
ar

y

95 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The following table describes the enumeration values in the

XMSimpleTableXMObjectCollectionClassNameEnum type.

Enumeration value Description

"XMPartition" The XMObject element contains a partition.

"XMRawColumn" The XMObject element contains information about a column.

"XMRelationship" The XMObject element contains information about a table relationship.

"XMUserHierarchy" The XMObject element contains information about user-defined hierarchies.

2.5.2.2 XMObject class="XMTableStats"

When the class attribute value for the XMObject element is "XMTableStats", the XMObject
element contains statistical information about the table, and the type of the XMObject element is
XMTableStatsXMObjectType.

<xs:complexType name="XMTableStatsXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMTableStatsPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMTableStats"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.2.1 XMTableStatsPropertiesType

The XMTableStatsPropertiesType simple type contains the specific properties that are allowed

when the XMObject element is of class "XMTableStats".

<xs:complexType name="XMTableStatsPropertiesType">

 <xs:all>

 <xs:element name="SegmentSize" type="xs:long"/>

 <xs:element name="Usage">

 <xs:simpleType>

 <xs:restriction base="xs:long">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="2"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:all>

</xs:complexType>

SegmentSize: The number of rows in the segment. Pr
el
im

in
ar

y

96 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Usage: An enumeration value for the usage of the table. One of the values in the following table
can be set.

Value Meaning

0 The table usage is unknown.

1 The table is a dimension table.

2 The table is a fact table.

2.5.2.3 XMObject class="XMRawColumn"

When the class attribute value for the XMObject element is "XMRawColumn", the XMObject

element contains the metadata for a raw data column, and the type of the XMObject element is
XMRawColumnXMObjectType.

<xs:complexType name="XMRawColumnXMObjectType">

 <xs:all>

 <xs:element name="Properties" type="XMRawColumnPropertiesType"/>

 <xs:element name="Members" type="XMRawColumnMembersType"/>

 <xs:element name="Collections" type="XMRawColumnCollectionsType"/>

 <xs:element name="DataObjects" type="XMRawColumnDataObjectsType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMRawColumn"/>

</xs:complexType>

Properties: A complex type that specifies the property values for the XMRawColumn object.

Members: A collection of Member complex type items, each of which contains a complex property

for the XMRawColumn object.

Collections: A collection of Collection complex type items, each of which contains a complex
property for the XMRawColumn object. The Collection complex property can be repeated multiple

times.

DataObjects: A collection of DataObject complex type items, each of which contains an object
with information about the column’s data.

name: The name of the XMRawColumn object instance.

class: An enumeration value that specifies the class name of this XMObject element.

ProviderVersion: The provider version.

2.5.2.3.1 XMRawColumnPropertiesType

The XMRawColumnPropertiesType complex type contains the specific properties that are allowed
when the XMObject element is of class "XMRawColumn".

<xs:complexType name="XMRawColumnPropertiesType">

 <xs:all>

 <xs:element name="Settings"> Pr
el
im

in
ar

y

97 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <xs:simpleType>

 <xs:restriction base="xs:long">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="7994"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="ColumnFlags">

 <xs:simpleType>

 <xs:restriction base="xs:long">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="63"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Collation" type="xs:string"/>

 <xs:element name="OrderByColumn" type="xs:string"/>

 <xs:element name="Locale" type="xs:long"/>

 <xs:element name="BinaryCharacters" type="xs:unsignedInt"/>

 </xs:all>

</xs:complexType>

Settings: The settings for the column. The low order 5 bits (values 0x0 through 0x11) contain the

column type. The remainder of the values can be combined with the column type.

The following table describes the values for the column type.

Value Meaning

0 The column has no settings.

0x1 The column contains basic data.

0x2 The column contains calculated data.

0x3 The column contains a relationship line number.

The following table describes the remainder of the values.

Value Meaning

0x5 The column contains data identifier–to–position mapping for a hierarchy.

0x7 The column contains position–to–data identifier mapping for a hierarchy.

0x8 The column contains the position of the parent item within the parent item’s own level in a
hierarchy.

0x9 The column contains the position of the child item within the child item’s own level in a
hierarchy.

0x10 The column contains a data identifier within a merged multilevel user hierarchy.

0x11 The column contains a count of the child items within a merged multilevel hierarchy.

0x100 NULLs are converted to zeros or spaces. Pr
el
im

in
ar

y

98 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Value Meaning

0x200 The column is trimmed on the left.

0x400 The column is trimmed on the right.

0x800 The column is a calculated column.

0x1000 The column needs defragmentation.

ColumnFlags: The flags for the properties of the column. One or more of the values in the following
table can be set. The value 0x8 MUST be set.

Value Meaning

0 No flags are set.

0x1 The column cannot be NULL.

0x2 A constraint exists specifying that all the values in the column MUST be unique.

0x4 The column is the primary key for the table.

0x8 The column has an intrinsic hierarchy.

0x10 The column contains row numbers.

0x20 The column has an unsorted hierarchy.

Collation: The name of the collation. The value MAY<7> be restricted to a string that is recognized
as valid by the system.

OrderByColumn: The column by which to order the hierarchy.

Locale: An LCID that specifies the locale.

BinaryCharacters: The maximum number of characters in a string that uses base64 encoding and

that represents a BLOB.

2.5.2.3.2 XMRawColumnMembersType

The XMRawColumnMembersType complex type holds a collection of Member items, each of
which contains a property for the parent XMSimpleTable object.

<xs:complexType name="XMSimpleTableMembersType">

 <xs:sequence>

 <xs:element name="Member" type="XMSimpleTableMemberType"

 minOccurs="2" maxOccurs="2"/>

 </xs:sequence>

</xs:complexType>

Member: A property for the parent XMObject element of class XMRawColumn. The value of the

Name element for the two instances of this element in the Members collection MUST have one
instance of each enumeration value from the XMRawColumnMemberNameEnum type (section

2.5.2.3.2.2). Pr
el
im

in
ar

y

99 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.3.2.1 XMRawColumnMemberType

The XMRawColumnMemberType complex type holds a Member item that is a property of the
parent XMRawTable object.

<xs:complexType name="XMRawColumnMemberType">

 <xs:sequence>

 <xs:element name="Name" type="XMRawColumnMemberNameEnum"

 minOccurs="0"/>

 <xs:element name="XMObject">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="XMObjectTypeBase">

 <xs:attribute name="class"

 type="XMRawColumnXMObjectMemberClassNameEnum"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

Name: The name of the Member object.

XMObject: A complex type that contains a nested instance of an XMObject element. The type of
the element is an extension of XMObjectTypeBase. However, the actual content allowed in an
instance is constrained and depends on the value of the class attribute of the XMObject element.

The content of the XMObject element MUST follow the constraints depending on its class attribute
value

The following attribute is added by extension for the XMObject element.

class: An enumeration value that specifies the class name of this XMObject element instance.
When the Name element of the Member item has a particular value, the XMObject element of the

Member item MUST have a specific value for the class attribute. The following table lists the
constraints between the values of Name and class.

Value of Name element Required value of class attribute

"IntrinsicHierarchy" "XMHierarchy"

"TableStats" "XMTableStats"

2.5.2.3.2.2 XMRawColumnMemberNameEnum

The XMRawColumnMemberNameEnum simple type enumerates the allowed values for the name

of a Member item in the Members collection of an XMRawColumn object.

<xs:simpleType name="XMRawColumnMemberNameEnum">

 <xs:restriction base="XMObjectMemberNameEnum">

 <xs:enumeration value="IntrinsicHierarchy"/>

 <xs:enumeration value="ColumnStats"/>

 </xs:restriction>

</xs:simpleType> Pr
el
im

in
ar

y

100 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The following table describes the enumeration values in the XMRawColumnMemberNameEnum

type.

Enumeration value Description

"IntrinsicHierarchy" The Member item represents the intrinsic hierarchy of a column.

"ColumnStats" The Member item contains column statistics.

2.5.2.3.2.3 XMRawColumnXMObjectMemberClassNameEnum

The XMRawColumnXMObjectMemberClassNameEnum simple type enumerates the allowed
values for the class name of the XMObject element that is contained in a Member item in the
Members collection of an XMRawColumn object.

<xs:simpleType name="XMRawColumnXMObjectMemberClassNameEnum">

 <xs:restriction base="XMObjectClassNameEnum">

 <xs:enumeration value="XMHierarchy"/>

 <xs:enumeration value="XMColumnStats"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the

XMRawColumnXMObjectMemberClassNameEnum type.

Enumeration value Description

"XMHierarchy" The XMObject element specifies information about the hierarchy.

"XMColumnStats" The XMObject element specifies statistics about the column.

2.5.2.3.3 XMRawColumnCollectionsType

The XMRawColumnCollectionsType complex type holds a collection of Collection items, each of

which contains a property for the parent XMRawColumns object. Collection items can be repeated
multiple times within the collection.

<xs:complexType name="XMRawColumnCollectionsType">

 <xs:sequence>

 <xs:element name="Collection" type="XMRawColumnCollectionType"

 minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

</xs:complexType>

Collection: A Collection item that is a property for the parent XMObject element of class

XMRawColumn. Collection items can be repeated within the collection.

2.5.2.3.3.1 XMRawColumnCollectionType

The XMRawColumnCollectionType complex type holds a Collection item that is a property of the
parent XMObject object.

<xs:complexType name="XMRawColumnCollectionType"> Pr
el
im

in
ar

y

101 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <xs:sequence>

 <xs:element name="Name" type="XMObjectCollectionNameEnum"

 fixed="Segments"/>

 <xs:element name="XMObject" type="XMColumnSegmentXMObjectType"

 maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

Name: The name of the Collection object.

XMObject: A complex type that contains a nested instance of an XMObject element. The value of
the class attribute of this XMObject element MUST equal "XMColumnSegment".

2.5.2.3.4 XMRawColumnDataObjectsType

The XMRawColumnDataObjectsType complex type holds data objects for the parent

XMRawColumn object instance.

<xs:complexType name="XMRawColumnDataObjectsType">

 <xs:sequence>

 <xs:element name="DataObject" type="XMRawColumnDataObjectType"

 minOccurs="2" maxOccurs="2"/>

 </xs:sequence>

</xs:complexType>

DataObject: A data object that holds information related to the data in the raw column. The two

instances of the DataObject element in the DataObjects collection MUST abide by the following
rules:

The value of the class attribute for one of the DataObject elements MUST be

"XMRawColumnPartitionDataObject".

The value of the class attribute for one of the DataObject elements MUST be one of the

following:

"XMValueDataDictionary<XM_Long>"

"XMValueDataDictionary<XM_Real>"

"XMHashDataDictionary<XM_Long>"

"XMHashDataDictionary<XM_Real>"

"XMHashDataDictionary<XM_String>"

2.5.2.3.4.1 XMRawColumnDataObjectType

The XMRawColumnDataObjectType complex type holds the data for one data object item in the
collection of data objects for the parent XMObject element.

<xs:complexType name="XMRawColumnDataObjectType">

 <xs:sequence>

 <xs:element name="XMObject">

 <xs:complexType>

 <xs:complexContent> Pr
el
im

in
ar

y

102 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <xs:extension base="XMObjectTypeBase">

 <xs:attribute name="class"

 type="XMRawColumnXMObjectDataObjectClassNameEnum"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

XMObject: A complex type that contains a nested instance of an XMObject element. The type of

the element is an extension of XMObjectTypeBase. However, the actual content that is allowed in
an instance is constrained and depends on the value of the class attribute of the XMObject
element. The content of the XMObject element MUST follow the constraints depending on its class
attribute value.

class: An enumeration value that specifies the class name of this XMObject element instance.

2.5.2.3.4.2 XMRawColumnXMObjectDataClassNameEnum

The XMRawColumnXMObjectDataObjectClassNameEnum simple type enumerates the allowed
values for the class attribute of the XMObject element that is contained in a DataObject item in
the DataObjects collection of an XMRawColumn object.

<xs:simpleType name="XMRawColumnXMObjectDataObjectClassNameEnum">

 <xs:restriction base="XMObjectClassNameEnum">

 <xs:enumeration value="XMValueDataDictionary<XM_Long>"/>

 <xs:enumeration value="XMValueDataDictionary<XM_Real>"/>

 <xs:enumeration value="XMHashDataDictionary<XM_Real>"/>

 <xs:enumeration value="XMHashDataDictionary<XM_Long>"/>

 <xs:enumeration value="XMHashDataDictionary<XM_String>"/>

 <xs:enumeration value="XMRawColumnPartitionDataObject"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the
XMRawColumnXMObjectDataObjectClassNameEnum type.

Enumeration value Description

"XMValueDataDictionary<XM_Long>" The column has a value data dictionary of type long.

"XMValueDataDictionary<XM_Real>" The column has a value data dictionary of type real.

"XMHashDataDictionary<XM_Long>" The column has a hash data dictionary of type long.

"XMHashDataDictionary<XM_Real>" The column has a hash data dictionary of type real.

"XMHashDataDictionary<XM_String>" The column has a hash data dictionary of type string.

"XMRawColumnPartitionDataObject" The XMObject specifies information about the partition for the
raw column. Pr

el
im

in
ar

y

103 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.4 XMObject class="XMRelationship"

When the class attribute value for the XMObject element is "XMRelationship", the XMObject
element contains the metadata for a relationship description, and the type of the XMObject

element is XMRelationshipXMObjectType.

<xs:complexType name="XMRelationshipXMObjectType">

 <xs:all>

 <xs:element name="Properties" type="XMRelationshipPropertiesType"/>

 <xs:element name="DataObjects" type="XMRelationshipDataObjectsType"/>

 </xs:all>

<xs:attribute name="ProviderVersion" type="xs:int"/>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMRelationship"/>

</xs:complexType>

Properties: The property values for the XMRawColumn object.

DataObjects: A collection of DataObject complex type items, each of which contains an object
that has information about the column’s data.

ProviderVersion: The provider version.

name: The name of the XMRelationshipXMObject instance.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.4.1 XMRelationshipPropertiesType

The XMRelationshipPropertiesType complex type contains the specific properties that are
allowed when the XMObject element is of class " XMRelationship".

<xs:complexType name="XMRelationshipPropertiesType">

 <xs:all>

 <xs:element name="PrimaryTable" type="xs:string"/>

 <xs:element name="PrimaryColumn" type="xs:string"/>

 <xs:element name="ForeignColumn" type="xs:string"/>

 </xs:all>

</xs:complexType>

PrimaryTable: The name of the table in which the primary key column exists.

PrimaryColumn: The primary key column.

ForeignColumn: The foreign key column.

2.5.2.4.2 XMRelationshipDataObjectsType

The XMRelationshipsDataObjectsType complex holds data objects for the parent
XMRelationship object instance.

<xs:complexType name="XMRelationshipDataObjectsType">

 <xs:all>

 <xs:element name="DataObject" type="XMRelationshipDataObjectType"/> Pr
el
im

in
ar

y

104 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 </xs:all>

</xs:complexType>

DataObject: A data object item that holds information related to the data for the relationship.

2.5.2.4.3 XMRelationshipDataObjectType

The XMRelationshipObjectType complex type holds the data for one data object item in the
collection of data objects for the parent XMObject element.

<xs:complexType name="XMRelationshipDataObjectType">

 <xs:all>

 <xs:element name="XMObject">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="XMObjectTypeBase">

 <xs:attribute name="class"

 type="XMRelationshipXMDataObjectXMObjectClassNameEnum"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 </xs:all>

</xs:complexType>

XMObject: A complex type that contains a nested instance of an XMObject element. The type of

the element is an extension of XMObjectTypeBase. However, the actual content allowed in an
instance is constrained and depends on the value of the class attribute of the XMObject element.
The content of the XMObject element MUST follow the constraints depending on its class attribute
value.

class: An enumeration value that specifies the class name of this XMObject element instance.

2.5.2.4.4 XMRelationshipXMDataObjectXMObjectClassNameEnum

The XMRelationshipXMDataObjectClassNameEnum simple type enumerates the allowed values
for the class attribute of the XMObject element that is contained in a DataObject item in the
DataObjects collection of an XMRelationship object.

<xs:simpleType name="XMRelationshipXMDataObjectXMObjectClassNameEnum">

 <xs:restriction base="XMObjectClassNameEnum">

 <xs:enumeration value="XMRelationshipIndexDenseDIDs"/>

 <xs:enumeration value="XMRelationshipIndexSparseDIDs"/>

 <xs:enumeration value="XMRelationshipIndex123DIDs"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the

XMRelationshipXMDataObjectClassNameEnum type.

Enumeration value Description

"XMRelationshipIndexDenseDIDs" The object is a relationship index with dense data identifiers. Pr
el
im

in
ar

y

105 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Enumeration value Description

"XMRelationshipIndexSparseDIDs" The object is a relationship index with sparse data identifiers.

"XMRelationshipIndex123DIDs" The object is a relationship index that is used only for the
RowNumber column (section 2.3.4).

2.5.2.5 XMObject class="XMRelationshipIndexSparseDIDs"

When the class attribute value for the XMObject element is "XMRelationshipIndexSparseDIDs", the
XMObject element contains the metadata for relationship index where the data identifiers are
sparse, and the type of the XMObject element is
XMRelationshipIndexSparseDIDsXMObjectType.

<xs:complexType name="XMRelationshipIndexSparseDIDsXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMRelationshipIndexSparseDIDsPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMRelationshipIndexSparseDIDs"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.5.1 XMRelationshipIndexSparseDIDsPropertiesType

The XMRelationshipIndexSparseDIDsPropertiesType complex type contains the specific

properties that are allowed when the XMObject element is of class
"XMRelationshipIndexSparseDIDs".

<xs:complexType name="XMRelationshipIndexSparseDIDsPropertiesType">

 <xs:all>

 <xs:element name="Flags">

 <xs:simpleType>

 <xs:restriction base="xs:long">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="1"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:all>

</xs:complexType>

Flags: The flags for the relationship index. The only value that can be set is 0x01, which means that

the index potentially has relational integrity violations. Pr
el
im

in
ar

y

106 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.6 XMObject class="XMRelationshipIndexDenseDIDs"

When the class attribute value for the XMObject element is "XMRelationshipIndexDenseDIDs", the
XMObject element contains the metadata for a relationship index where the data identifiers are

dense, and the type of the XMObject element is
XMRelationshipIndexDenseDIDsXMObjectType.

<xs:complexType name="XMRelationshipIndexDenseDIDsXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMRelationshipIndexDenseDIDsPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMRelationshipIndexDenseDIDs"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.6.1 XMRelationshipIndexDenseDIDsPropertiesType

The XMRelationshipIndexDenseDIDsPropertiesType complex type contains the specific
properties that are allowed when the XMObject element is of class
"XMRelationshipIndexDenseDIDs".

<xs:complexType name="XMRelationshipIndexDenseDIDsPropertiesType">

 <xs:all>

 <xs:element name="Records" type="xs:long"/>

 <xs:element name="TableName" type="xs:string"/>

 <xs:element name="Flags">

 <xs:simpleType>

 <xs:restriction base="xs:long">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="1"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:all>

</xs:complexType>

Records: The count of records.

TableName: The table name. This value MUST be the same as the value of the ID element (section
2.6.6) for the dimension that corresponds to this table.

Flags: The flags for the relationship index. The only value that can be set is 0x01, which means that

the index potentially has relational integrity violations.

Pr
el
im

in
ar

y

107 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.7 XMObject class="XMRelationshipIndex123DIDs"

When the class attribute value for the XMObject element is "XMRelationshipIndex123DIDs", the
XMObject element contains metadata for a relationship index that is used only for the

RowNumber column when that column is on the primary side of the relationship, and the type of
the XMObject element is XMRelationshipIndex123DIDsXMObjectType. For more details about
the RowNumber column, see section 2.3.4.

<xs:complexType name="XMRelationshipIndex123DIDsXMObjectType">

 <xs:all>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMRelationshipIndex123DIDs"/>

</xs:complexType>

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.8 XMObject class="XMColumnStats"

When the class attribute value for the XMObject element is "XMColumnStats", the XMObject
element contains statistical information about the column, and the type of the XMObject element is

XMColumnStatsXMObjectType.

<xs:complexType name="XMColumnStatsXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMColumnStatsPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMColumnStats"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.8.1 XMColumnStatsPropertiesType

The XMColumnStatsPropertiesType complex type contains the specific properties that are
allowed when the XMObject element is of class "XMColumnStats".

<xs:complexType name="XMColumnStatsPropertiesType">

 <xs:all>

 <xs:element name="DistinctStates" type="xs:int"/>

 <xs:element name="MinDataID" type="xs:int"/>

 <xs:element name="MaxDataID" type="xs:int"/>

 <xs:element name="OriginalMinSegmentDataID" type="xs:int"/>

 <xs:element name="RLESortOrder" type="xs:long"/>

 <xs:element name="RowCount" type="xs:long"/> Pr
el
im

in
ar

y

108 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <xs:element name="HasNulls" type="xs:boolean"/>

 <xs:element name="RLERuns" type="xs:long"/>

 <xs:element name="OthersRLERuns" type="xs:long"/>

 <xs:element name="Usage">

 <xs:simpleType>

 <xs:restriction base="xs:long">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="3"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="DBType">

 <xs:simpleType>

 <xs:restriction base="xs:short">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="29"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="XMType">

 <xs:simpleType>

 <xs:restriction base="xs:int">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="3"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="CompressionType">

 <xs:simpleType>

 <xs:restriction base="xs:int">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="2"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="CompressionParam" type="xs:long"/>

 <xs:element name="EncodingHint">

 <xs:simpleType>

 <xs:restriction base="xs:int">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="2"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="AggCounter" type="xs:long"/>

 <xs:element name="WhereCounter" type="xs:long"/>

 <xs:element name="OrderByCounter" type="xs:long"/>

 </xs:all>

</xs:complexType>

DistinctStates: The number of distinct values, including NULL, in the column.

MinDataID: The minimum data identifier for the column.

MaxDataID: The maximum data identifier for the column.

OriginalMinSegmentDataID: The minimum data identifier for a segment. Pr
el
im

in
ar

y

109 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

RLESortOrder: A value that is unused, MUST be –1, and MUST be ignored.

RowCount: The number of rows in the column segment.

HasNulls: A value that specifies whether the column has NULL values.

RLERuns: An estimate of the number of RLE runs.

OthersRLERuns: The number of RLE runs that are not solid runs. A solid run is a run of
consecutive, identical values that cannot be compressed by RLE techniques.

Usage: An enumeration value that specifies the column usage. The values in the following table are
used.

Value Meaning

0 The column is the primary key for the table.

1 The column is the foreign key for the table.

2 The column contains BLOBs.

3 The column is a regular one.

DBType: An enumeration value that specifies the OLE DB type of the column. The values in the

following table are used.

Value OLE DB type

0 Null

1 Empty

2 Boolean

3 I2

4 I2

5 I4

6 I8

7 UI1

8 UI2

9 UI4

10 UI8

11 Real4

12 Real8

13 Currency

14 Decimal Pr
el
im

in
ar

y

%5bMS-OFCGLOS%5d.pdf

110 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Value OLE DB type

15 Numeric

16 Date

17 DatabaseDate

18 DatabaseTimestamp

19 FileTime

20 String

21 WideString

22 BSTR

23 GUID

24 Bytes

25 Hchapter

26 Variant

27 Error

28 Unknown

29 Varnumeric

XMType: An enumeration value. The values in the following table are used.

Value Meaning

0 XM_Long

1 XM_Real

2 XM_String

CompressionType: An enumeration value that specifies the type of compression. The values in the
following table are used.

Value Type of compression

0 Automatic (that is, determined by the system)

1 NoSplit (see section 2.7.1)

CompressionParam: Either the bit length for NoSplit compression or the bookmark distance for

RLE compression.

EncodingHint: An enumeration value that specifies the type of encoding. The values in the
following table are used. Pr

el
im

in
ar

y

111 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Value Type of encoding

0 Automatic (that is, determined by the system)

1 Hash encoding

2 Value encoding

AggCounter: A value that is unused and MUST be ignored.

WhereCounter: A value that is unused and MUST be ignored.

OrderByCounter: A value that is unused and MUST be ignored.

2.5.2.9 XMObject class="XMHierarchy"

When the class attribute value for the XMObject element is "XMHierarchy", the XMObject element
contains metadata about the hierarchy that represents the column, and the type of the XMObject

element is XMHierarchyXMObjectType.

<xs:complexType name="XMHierarchyXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMHierarchyPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMHierarchy"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

name: The name of the XMHierarchy object instance.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.9.1 XMHierarchyPropertiesType

The XMHierarchyPropertiesType complex type contains the specific properties that are allowed
when the XMObject element is of class "XMHierarchy".

<xs:complexType name="XMHierarchyPropertiesType">

 <xs:all>

 <xs:element name="SortOrder" type="xs:int"/>

 <xs:element name="IsProcessed" type="xs:boolean"/>

 <xs:element name="TypeMaterialization" type="xs:int"/>

 <xs:element name="ColumnPosition2DataID" type="xs:long"/>

 <xs:element name="ColumnDataID2Position" type="xs:long"/>

 <xs:element name="DistinctDataIDs" type="xs:long"/>

 <xs:element name="TableStore" type="xs:string"/>

 </xs:all>

</xs:complexType> Pr
el
im

in
ar

y

%5bMS-OFCGLOS%5d.pdf

112 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

SortOrder: An integer value that specifies the sort order. The values in the following table are valid.

Value Sort order

0 Ascending

2 Unsorted

IsProcessed: A Boolean value that specifies whether the hierarchy has been processed.

TypeMaterialization: An integer value that specifies the type of materialization. The values in the
following table are valid.

Value Type of materialization

–1 The type of materialization is unspecified. This value MUST NOT be used if IsProcessed is not
equal to FALSE.

0 The hierarchy gets materialized as a table of two columns: one for position–to–data identifier
mapping, and another for data identifier–to–position mapping.

1 The hierarchy gets materialized as a column for position–to–data identifier mapping and a hash
for data identifier–to–position mapping.

2 No materialization occurs because the column is empty.

3 No materialization occurs because an identity column is present.

ColumnPosition2DataID: A long value that specifies whether a column position–to–data identifier
index is used. The values in the following table are valid.

Value Meaning

0 A column position–to–data identifier index is used.

–1 A column position–to–data identifier index is not used.

ColumnDataID2Position: A long value that specifies whether a data identifier–to–column position
index is used. The values in the following table are valid.

Value Meaning

1 A data identifier–to–column position index is used.

–1 A data identifier–to–column position index is not used.

DistinctDataIDs: The number of distinct data identifiers.

TableStore: The root name of the hierarchy metadata file that is generated by the system. This
value includes neither the version number that is part of the file name nor the "tbl.xml" that appears

at the end of the file name.

Pr
el
im

in
ar

y

113 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.10 XMObject class="XMUserHierarchy"

When the class attribute value for the XMObject element is "XMUserHierarchy", the XMObject
element contains metadata about user-defined hierarchy, and the type of the XMObject element is

XMUserHierarchyXMObjectType.

<xs:complexType name="XMUserHierarchyXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMUserHierarchyPropertiesType"/>

 </xs:all>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMUserHierarchy"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

name: The name of the XMuserHierarchy object instance.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.10.1 XMUserHierarchyPropertiesType

The XMUserHierarchyPropertiesType complex type contains the specific properties that are
allowed when the XMObject element is of class "XMUserHierarchy".

<xs:complexType name="XMUserHierarchyPropertiesType">

 <xs:all>

 <xs:element name="IsProcessed" type="xs:boolean"/>

 <xs:element name="TableStore" type="xs:string"/>

 <xs:element name="TableName" type="xs:string"/>

 </xs:all>

</xs:complexType>

IsProcessed: A Boolean value that specifies whether the user hierarchy has been processed.

TableStore: A string value that specifies name and unique value combinations for a user hierarchy.
The string is constructed as a series of interpretable parts, with a dollar sign ($) as the separator.
The names of the columns in the user hierarchy, from the top down, are included, and after each
level’s name is a zero-based starting number of unique values that exist at the levels numbered

higher than the current level. The names that are used MUST match the ID element of the Level
element of the Hierarchy element that is contained in the dimension (see section 2.6.6).

For example, assume that a user hierarchy with 4 levels exists. Assume that from the top down, the
levels are Country, State, City, and Customer. In the data for this hierarchy, 2 unique values exist

for Country, 4 unique values exist for Country-State combinations, and 7 unique values exist for
Country-State-City combinations. The string would then be
"$Country$0$State$2$City$6$Customer$13$".

In referring to levels, the "ALL" level is not included; the references are to the highest user-defined
level, which is one level below the ALL level. The first component of the string is the dollar sign ($). Pr

el
im

in
ar

y

114 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Then comes the column name that represents the highest level in the user hierarchy, which is
"Country". Each substring component continues to be separated by a dollar sign ($). The next

component of the string is the number of unique combinations that are higher than this level. That
value is "0" because no levels exist that are higher than this one. The next level name is "State".

Because 2 countries exist, 2 unique values exist at levels above State, so the value "2" appears in
the string. The next level name is "City". Because 4 unique combinations of Country-State and 2
unique countries exist, a total of 6 combinations exist at levels above the City level. Therefore, "6" is
added to the string. The next and lowest level is "Customer". Because 7 unique Country-State-City
values exist, and there already were 6 unique level values, 13 unique Country-State-City values now
exist above the Customer level. Hence, the value "13" is added to the string value. The string value
ends with a dollar sign ($).

TableName: The root name of the user hierarchy metadata file that is generated by the system.
This value includes neither the version number that is part of the file name nor the "tbl.xml" that
appears at the end of the file name.

2.5.2.11 XMObject class="XMHierarchyDataID2PositionHashIndex"

When the class attribute value for the XMObject element is

"XMHierarchyDataID2PositionHashIndex", the XMObject element contains metadata for the
hierarchy data identifier–to–position hash index mapping, and the type of the XMObject element is
XMHierarchyDataID2PositionHashIndexXMObjectType.

<xs:complexType name="XMHierarchyDataID2PositionHashIndexXMObjectType">

 <xs:all/>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMHierarchyDataID2PositionHashIndex"/>

</xs:complexType>

ProviderVersion: The provider version.

name: The name of the XMHierarchyDataID2PositionHashIndex object instance.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.12 XMObject class="XMColumnSegment"

When the class attribute value for the XMObject element is "XMColumnSegment", the XMObject
element contains metadata for a column segment, and the type of the XMObject element is

XMColumnSegmentXMObjectType.

<xs:complexType name="XMColumnSegmentXMObjectType">

 <xs:all>

 <xs:element name="Properties" type="XMColumnSegmentPropertiesType"/>

 <xs:element name="Members" type="XMColumnSegmentMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMColumnSegment">

 </xs:attribute>

</xs:complexType>

Properties: The property values for the XMSimpleTable object. Pr
el
im

in
ar

y

115 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Members: A collection of Member complex type items, each of which contains a complex property
for the XMSimpleTable object.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.12.1 XMColumnSegmentPropertiesType

The XMColumnSegmentPropertiesType complex type contains the specific properties that are
allowed when the XMObject element is of class "XMColumnSegment".

<xs:complexType name="XMColumnSegmentPropertiesType">

 <xs:all>

 <xs:element name="Records" type="xs:long"/>

 <xs:element name="Mask">

 <xs:simpleType>

 <xs:restriction base="xs:long">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="2"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:all>

</xs:complexType>

Records: The number of records in the column segment.

Mask: A value that is unused and MUST be ignored.

2.5.2.12.2 XMColumnSegmentMembersType

The XMColumnSegmentMembersType complex type holds a collection of Member items, each of
which contains a property for the parent XMColumnSegment object.

<xs:complexType name="XMColumnSegmentMembersType">

 <xs:sequence>

 <xs:element name="Member" type="XMColumnSegmentMemberType"

 minOccurs="3" maxOccurs="3"/>

 </xs:sequence>

</xs:complexType>

Member: A complex type element that contains a complex Member item, which contains a

property for the parent XMObject element. The value of the Name element for the three instances
of this element in the Members collection MUST have one instance of each enumeration value from
the XMColumnSegmentMemberNameEnum type (section 2.5.2.12.2.2).

2.5.2.12.2.1 XMColumnSegmentMemberType

The XMColumnSegmentMemberType complex type holds a Member item that is a property of

the parent XMColumnSegment object.

<xs:complexType name="XMColumnSegmentMemberType">

 <xs:sequence>

 <xs:element name="Name" type="XMColumnSegmentMemberNameEnum" Pr
el
im

in
ar

y

116 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 minOccurs="0"/>

 <xs:element name="XMObject">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="XMObjectTypeBase">

 <xs:attribute name="class"

 type="XMColumnSegmentXMObjectMemberClassNameEnum"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

Name: The name of the Member object.

XMObject: A complex type that contains a nested instance of an XMObject element. The type of
the element is an extension of XMObjectTypeBase. However, the actual content allowed in an

instance is constrained and depends on the value of the class attribute of the XMObject element.
The content of the XMObject element MUST follow the constraints depending on its class attribute

value.

class: An enumeration value that specifies the class name of this XMObject element instance.
When the Name element of the Member item has a particular value, the XMObject element of the
Member item MUST have a specific value for the class attribute. The following table lists the
constraints between the values of Name and class.

Value of Name

element Required value of class attribute

"SubSegment" "XMColumnSegment"

"CompressionInfo" "XMHybridRLECompressionInfo class<XMRENoSplitCompressionInfo<n>>",
where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 21, 32, or
XM123CompressionInfo

"ColumnSegmentStats" "XMColumnSegmentStats"

2.5.2.12.2.2 XMColumnSegmentMemberNameEnum

The XMColumnSegmentMemberNameEnum simple type enumerates the allowed values for the
name of a Member item in the Members collection of an XMColumnSegment object.

<xs:simpleType name="XMColumnSegmentMemberNameEnum">

 <xs:restriction base="XMObjectMemberNameEnum">

 <xs:enumeration value="SubSegment"/>

 <xs:enumeration value="CompressionInfo"/>

 <xs:enumeration value="ColumnSegmentStats"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the

XMColumnSegmentMemberNameEnum type. Pr
el
im

in
ar

y

117 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Enumeration value Description

"SubSegment" The Member item specifies information about the subsegment.

"CompressionInfo" The Member item specifies information about the compression for the column
segment.

"ColumnSegmentStats" The Member item specifies statistical information for the column segment.

2.5.2.12.2.3 XMColumnSegmentXMObjectMemberClassNameEnum

The XMColumnSegmentXMObjectMemberClassNameEnum simple type enumerates the allowed
values for the class attribute of the XMObject element that is contained in a Member item for a
member of a XMColumnSegment object.

<xs:simpleType name="XMColumnSegmentXMObjectMemberClassNameEnum">

 <xs:restriction base="XMObjectClassNameEnum">

 <xs:enumeration value="XMColumnSegment"/>

 <xs:enumeration value="XMColumnSegmentStats"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<1>>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<2>>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<3>>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<4>>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<5>>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<6>>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<7>>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<8>>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<9>>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<10>>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<12>>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<16>>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<21>>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<32>>"/>

 <xs:enumeration value=

 "XMHybridRLECompressionInfo<class XM123CompressionInfo>"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the

XMColumnSegmentXMObjectMemberClassNameEnum type. Pr
el
im

in
ar

y

118 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Enumeration value Description

"XMColumnSegment" The object specifies information about the column
segment.

"XMColumnSegmentStats" The object specifies column segment statistics.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<1>>"

The column is compressed by means of hybrid RLE
compression with XMRENoSplitCompression<1>. For
more details, see section 2.7.3.2.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<2>>"

The column is compressed by means of hybrid RLE
compression with XMRENoSplitCompression<2>. For
more details, see section 2.7.3.3.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<3>>"

The column is compressed by means of hybrid RLE
compression with XMRENoSplitCompression<3>. For
more details, see section 2.7.3.4.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<4>>"

The column is compressed by means of hybrid RLE
compression with XMRENoSplitCompression<4>. For
more details, see section 2.7.3.5.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<5>>"

The column is compressed by means of hybrid RLE
compression with XMRENoSplitCompression<5>. For
more details, see section 2.7.3.6.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<6>>"

The column is compressed by means of hybrid RLE
compression with XMRENoSplitCompression<6>. For
more details, see section 2.7.3.7.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<7>>"

The column is compressed by means of hybrid RLE
compression with XMRENoSplitCompression<7>. For
more details, see section 2.7.3.8.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<8>>"

The column is compressed by means of hybrid RLE
compression with XMRENoSplitCompression<8>. For
more details, see section 2.7.3.9.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<9>>"

The column is compressed by means of hybrid RLE
compression with XMRENoSplitCompression<9>. For
more details, see section 2.7.3.10.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<10>>"

The column is compressed by means of hybrid RLE
compression with XMRENoSplitCompression<10>. For
more details, see section 2.7.3.11.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<12>>"

The column is compressed by means of hybrid RLE
compression with XMRENoSplitCompression<12>. For
more details, see section 2.7.3.12.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<16>>"

The column is compressed by means of hybrid RLE
compression with XMRENoSplitCompression<16>. For
more details, see section 2.7.3.13.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<21>>"

The column is compressed by means of hybrid RLE
compression with XMRENoSplitCompression<21>. For
more details, see section 2.7.3.14.

"XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<32>>"

The column is compressed by means of hybrid RLE
compression with XMRENoSplitCompression<32>. For Pr

el
im

in
ar

y

119 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Enumeration value Description

more details, see section 2.7.3.15.

"XMHybridRLECompressionInfo<class
XM123CompressionInfo>"

The column is compressed by means of hybrid RLE
compression with XM123Compression. For more details,
see section 2.7.3.16.

2.5.2.13 XMObject class="XMPartition"

When the class attribute value for the XMObject element is "XMPartition", the XMObject element
contains metadata about the partition (2), and the type of the XMObject element is
XMPartitionXMObjectType.

<xs:complexType name="XMPartitionXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMPartitionPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMPartition"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

name: The name of the partition. This name is the same as the name of the source data table.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.13.1 XMPartitionPropertiesType

The XMPartitionPropertiesType complex type contains the specific properties that are allowed

when the XMObject element is of class "XMPartition".

<xs:complexType name="XMPartitionPropertiesType">

 <xs:all>

 <xs:element name="IsProcessed" type="xs:boolean"/>

 <xs:element name="Partition" type="xs:int"/>

 </xs:all>

</xs:complexType>

IsProcessed: A Boolean value that specifies whether the partition has been processed.

Partition: An incremental identifier for the partition.

2.5.2.14 XMObject class="XMMultiPartSegmentMap"

When the class attribute value for the XMObject element is "XMMultiPartSegmentMap", the
XMObject element contains mapping information for data segments, and the type of the XMObject
element is XMMultiPartSegmentMapXMObjectType. Pr

el
im

in
ar

y

%5bMS-OFCGLOS%5d.pdf

120 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

<xs:complexType name="XMMultiPartSegmentMapXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMMultiPartSegmentMapPropertiesType"/>

 <xs:element name="Collections" type="XMMultiPartSegmentMapCollectionsType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMMultiPartSegmentMap"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

Collections: A collection of Collection complex type items, each of which contains a complex

property for the XMMultiPartSegmentMap object. The Collection complex property can be
repeated multiple times.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of the XMObject element.

2.5.2.14.1 XMMultiPartSegmentMapPropertiesType

The XMMultiSegmentMapPropertiesType complex type contains the specific properties that are

allowed when the XMObject element is of class "XMMultiPartSegmentMap".

<xs:complexType name="XMMultiPartSegmentMapPropertiesType">

 <xs:all>

 <xs:element name="FirstPartitionRecordCount" type="xs:long"/>

 <xs:element name="FirstPartitionSegmentCount" type="xs:long"/>

 </xs:all>

</xs:complexType>

FirstPartitionRecordCount: A value that is unused and MUST be ignored.

FirstPartitionSegmentCount: A value that is unused and MUST be ignored.

2.5.2.14.2 XMMultiPartSegmentMapCollectionsType

The XMMultiPartSegmentMapCollectionsType complex type contains the collection properties
that are allowed when the XMObject element is of class "XMMultiPartSegmentMap".

<xs:complexType name="XMMultiPartSegmentMapCollectionsType">

 <xs:sequence>

 <xs:element name="Collection"

 type="XMMultiPartSegmentMapCollectionType"/>

 </xs:sequence>

</xs:complexType>

Collection: A collection of Collection complex type items, each of which contains a complex

property for the XMMultiPartSegmentMap object. Each Collection item can be repeated multiple
times. Pr

el
im

in
ar

y

121 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.14.3 XMMultiPartSegmentMapCollectionType

The XMMultiPartSegmentMapCollectionType complex type holds a Collection item that is a
property of the parent XMMultiPartSegmentMap object.

<xs:complexType name="XMMultiPartSegmentMapCollectionType">

 <xs:sequence>

 <xs:element name="Name" type="XMObjectCollectionNameEnum"

 fixed="Partitions"/>

 <xs:element name="XMObject" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="XMObjectTypeBase">

 <xs:attribute name="class" type=

 "XMMultiPartSegmentMapXMObjectCollectionClassNameEnum"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

Name: The name of the Collection object.

XMObject: A complex type that contains a nested instance of an XMObject element.

2.5.2.14.3.1 XMMultiPartSegmentMapXMObjectCollectionClassNameEnum

The XMMultiPartSegmentMapXMObjectCollectionClassNameEnum simple type enumerates

the allowed values for the class name of the XMObject element that is contained in a Collection
item in the Collections collection of an XMMultiPartSegmentMap object.

<xs:simpleType name=

 "XMMultiPartSegmentMapXMObjectCollectionClassNameEnum">

 <xs:restriction base="XMObjectClassNameEnum">

 <xs:enumeration value="XMSegment1Map"/>

 <xs:enumeration value=

 "XMSegmentEqualMapEx<XMSegmentEqualMap_FastInstantiation>"/>

 <xs:enumeration value=

 "XMSegmentEqualMapEx<XMSegmentEqualMap_ComplexInstantiation>"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the

XMMultiPartSegmentMapXMObjectCollectionClassNameEnum type.

Enumeration value Description

"XMSegment1Map" A segment map for a column
that has a single segment.

"XMSegmentEqualMapEx<XMSegmentEqualMap_ComplexInstantiation>" A segment map of equally
sized segments (except that
the size of the last segment
can differ from that of the
others). Note that complex Pr

el
im

in
ar

y

122 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Enumeration value Description

instantiation occurs when the
segment size is determined at
run time.

"XMSegmentEqualMapEx<XMSegmentEqualMap_FastInstantiation>" A segment map of equally
sized segments (except that
the size of the last segment
can differ from that of the
others). Note that fast
instantiation is for
predetermined segment sizes.

2.5.2.15 XMObject class="XMSegment1Map"

When the class attribute value for the XMObject element is "XMSegment1Map", the XMObject
element contains mapping information for the first data segment, and the type of the XMObject

element is XMSegment1MapXMObjectType.

<xs:complexType name="XMSegment1MapXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMSegment1MapPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMSegment1Map"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of the XMObject element.

2.5.2.15.1 XMSegment1MapPropertiesType

The XMSegment1MapPropertiesType complex type contains the specific properties that are
allowed when the XMObject element is of class "XMSegment1Map".

<xs:complexType name="XMSegment1MapPropertiesType">

 <xs:all>

 <xs:element name="Records" type="xs:long"/>

 </xs:all>

</xs:complexType>

Records: The number of records in the segment map.

2.5.2.16 XMObject

class="XMSegmentEqualMapEx<XMSegmentEqualMap_FastInstantiation>"

When the class attribute value for the XMObject element is

"XMSegmentEqualMapEx<XMSegmentEqualMap_FastInstantiation>", the XMObject element
contains metadata for a segment map of equally sized segments (except that size of the last Pr

el
im

in
ar

y

123 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

segment can differ from that of the others), and the type of the XMObject element is
XMSegmentEqualMapEx_XMSegmentEqualMap_FastInstantiationXMObjectType. Fast

instantiation means that the segment size is predetermined and does not need to be determined at
run time.

<xs:complexType name=

"XMSegmentEqualMapEx_XMSegmentEqualMap_FastInstantiationXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMSegmentEqualMapEx_PropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMSegmentEqualMapEx<XMSegmentEqualMap_FastInstantiation>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.16.1 XMSegmentEqualMapEx_PropertiesType

The XMSegmentEqualMapEx_PropertiesType complex type contains the specific properties that
are allowed when the XMObject element is of either class
"XMSegmentEqualMapEx<XMSegmentEqualMap_ComplexInstantiation>" or class
"XMSegmentEqualMapEx<XMSegmentEqualMap_FastInstantiation>"

<xs:complexType name="XMSegmentEqualMapEx_PropertiesType">

 <xs:all>

 <xs:element name="Segments" type="xs:long"/>

 <xs:element name="Records" type="xs:long"/>

 <xs:element name="RecordsPerSegment" type="xs:long"/>

 </xs:all>

</xs:complexType>

Segments: The number of segments.

Records: The total number of records in all of the segments.

RecordsPerSegment: The number of records per segment.

2.5.2.17 XMObject

class="XMSegmentEqualMapEx<XMSegmentEqualMap_ComplexInstantiation>"

When the class attribute value for the XMObject element is
"XMSegmentEqualMapEx<XMSegmentEqualMap_ComplexInstantiation>", the XMObject element

contains metadata for a segment map of equally sized segments (except that size of the last
segment can differ from that of the others), and the type of the XMObject element is
XMSegmentEqualMapEx_XMSegmentEqualMap_ComplexInstantiationXMObjectType.

Complex instantiation means that the segment size is determined at run time.

<xs:complexType name= Pr
el
im

in
ar

y

124 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

"XMSegmentEqualMapEx_XMSegmentEqualMap_ComplexInstantiationXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMSegmentEqualMapEx_PropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMSegmentEqualMapEx<XMSegmentEqualMap_ComplexInstantiation>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.18 XMObject class="XMValueDataDictionary<XM_Long>"

When the class attribute value for the XMObject element is "XMValueDataDictionary<XM_Long>",
the XMObject element contains metadata for a value dictionary of long values, and the type of the
XMObject element is XMObject_ValueDictionaryLongType.

<xs:complexType name="XMObject_ValueDictionaryLongType">

 <xs:all>

 <xs:element name="Properties"

 type="PropertiesValueDictionaryType"/>

 </xs:all>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMValueDataDictionary<XM_Long>"/>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

class: An enumeration value that specifies the class name of this XMObject element.

ProviderVersion: The provider version.

2.5.2.18.1 PropertiesValueDictionaryType

The PropertiesValueDictionaryType complex type contains the specific properties that are
allowed when the XMObject element is of either class "XMValueDictionary<XM_Real>" or
"XMValueDictionary<XM_Long>".

<xs:complexType name="PropertiesValueDictionaryType">

 <xs:all>

 <xs:element name="DataVersion" type="xs:int"/>

 <xs:element name="BaseId" type="xs:long"/>

 <xs:element name="Magnitude" type="xs:double"/>

 </xs:all>

</xs:complexType>

DataVersion: The internal version number for this data. This version number is not required to

match the version numbers of other objects within the same table or column. Pr
el
im

in
ar

y

125 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

BaseId: A value that is part of the calculation used to map from a data identifier to a data value. To
perform such a mapping, add this value to the data identifier, and then multiply by the value of the

Magnitude element.

Magnitude: A value that is part of the calculation used to map from a data identifier to a data

value. To perform such a mapping, add the value of the BaseId element to the data identifier, and
then multiply by this value.

2.5.2.19 XMObject class="XMValueDataDictionary<XM_Real>"

When the class attribute value for the XMObject element is "XMValueDataDictionary<XM_Real>",
the XMObject element contains metadata for a value dictionary of real values, and the type of the
XMObject element is XMObject_ValueDictionaryRealType.

<xs:complexType name="XMObject_ValueDictionaryRealType">

 <xs:all>

 <xs:element name="Properties"

 type="PropertiesValueDictionaryType"/>

 </xs:all>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMValueDataDictionary<XM_Real>"/>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

Class: An enumeration value that specifies the class name of this XMObject element.

ProviderVersion: The provider version.

2.5.2.20 XMObject class="XMHashDataDictionary<XM_Real>"

When the class attribute value for the XMObject element is "XMHashDataDictionary<XM_Real>",

the XMObject element contains metadata for a hash dictionary of real values, and the type of the
XMObject element is XMObject_HashDictionaryRealType.

<xs:complexType name="XMObject_HashDictionaryRealType">

 <xs:all>

 <xs:element name="Properties"

 type="PropertiesHashDictionaryRealType"/>

 </xs:all>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMHashDataDictionary<XM_Real>"/>

 <xs:attributeGroup ref="HashDictionaryAttributeGroup"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

class: An enumeration value that specifies the class name of this XMObject element.

HashDictionaryAttributeGroup: An attribute group that specifies the common attributes for all
hash dictionary XMObject objects. Pr

el
im

in
ar

y

126 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.20.1 HashDictionaryAttributeGroup

The HashDictionaryAttributeGroup attribute group contains the attributes that are common to
the XMObject objects for hash dictionaries.

<xs:attributeGroup name="HashDictionaryAttributeGroup">

 <xs:attribute name="name">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value=

"\d*\.Table-[a-zA-Z0-9$^&'@{},=!$#()%~_\[\]\.\-\+]*\.dictionary"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

</xs:attributeGroup>

name: The name of the dictionary file. For information about the interpretation of the components

of this attribute, see section 2.2.2.3.2.6.

ProviderVersion: The provider version.

2.5.2.20.2 PropertiesHashDictionaryRealType

The PropertiesHashDictionaryRealType complex type contains the specific properties that are

allowed when the XMObject element is of class "XMHashDictionary<XM_Real>". This type is also
the base type for extension for other hash dictionary XMObject types.

<xs:complexType name="PropertiesHashDictionaryRealType">

 <xs:sequence>

 <xs:element name="DataVersion" type="xs:int"/>

 <xs:element name="LastId" type="xs:int"/>

 <xs:element name="Nullable" type="xs:boolean"/>

 <xs:element name="Unique" type="xs:boolean"/>

 </xs:sequence>

</xs:complexType>

DataVersion: The internal version number for this data. This version number is not required to
match the version numbers of other objects within the same table or column.

LastId: The last data identifier value for this hash dictionary.

Nullable: A Boolean value that specifies whether this hash dictionary can contain NULL values.

Unique: A Boolean value that specifies whether all the values in this hash dictionary are unique.

2.5.2.21 XMObject class="XMHashDataDictionary<XM_Long>"

When the class attribute value for the XMObject element is "XMHashDataDictionary<XM_Long>",

the XMObject element contains metadata for a hash dictionary of long values, and the type of the

XMObject element is XMObject_HashDictionaryLongType.

<xs:complexType name="XMObject_HashDictionaryLongType">

 <xs:all>

 <xs:element name="Properties" Pr
el
im

in
ar

y

127 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 type="PropertiesHashDictionaryLongType"/>

 </xs:all>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMHashDataDictionary<XM_Long>"/>

 <xs:attributeGroup ref="HashDictionaryAttributeGroup"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

class: An enumeration value that specifies the class name of this XMObject element.

HashDictionaryAttributeGroup: An attribute group that specifies the common attributes for all
hash dictionary XMObject objects.

2.5.2.21.1 PropertiesHashDictionaryLongType

The PropertiesHashDictionaryLongType complex type contains the specific properties that are

allowed when the XMObject element is of class "XMHashDictionary<XM_Long>".

<xs:complexType name="PropertiesHashDictionaryLongType">

 <xs:complexContent>

 <xs:extension base="PropertiesHashDictionaryRealType">

 <xs:sequence>

 <xs:element name="OperatingOn32" type="xs:boolean"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

OperatingOn32: A Boolean value that indicates whether the dictionary encoded values are 32-bit
values.

The preceding description documents only the extended element in the

PropertiesHashDictionaryLongType type. For a description of the elements in the base type, see
section 2.5.2.20.2.

2.5.2.22 XMObject class="XMHashDataDictionary<XM_String>"

When the class attribute value for the XMObject element is "XMHashDataDictionary<XM_String>",

the XMObject element contains metadata for a hash dictionary of string values, and the type of
the XMObject element is XMObject_HashDictionaryStringType.

<xs:complexType name="XMObject_HashDictionaryStringType">

 <xs:all>

 <xs:element name="Properties"

 type="PropertiesHashDictionaryStringType"/>

 </xs:all>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMHashDataDictionary<XM_String>"/>

 <xs:attributeGroup ref="HashDictionaryAttributeGroup"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element. Pr
el
im

in
ar

y

128 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

class: An enumeration value that specifies the class name of this XMObject element.

HashDictionaryAttributeGroup: An attribute group that specifies the common attributes for all

hash dictionary XMObject objects.

2.5.2.22.1 PropertiesHashDictionaryStringType

The PropertiesHashDictionaryStringType complex type contains the specific properties that are
allowed when the XMObject element is of class "XMHashDictionary<XM_String>".

<xs:complexType name="PropertiesHashDictionaryStringType">

 <xs:complexContent>

 <xs:extension base="mstns:PropertiesHashDictionaryRealType">

 <xs:sequence>

 <xs:element name="DictionaryFlags">

 <xs:simpleType>

 <xs:restriction base="xs:long">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="3"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

DictionaryFlags: A bitmask value in which zero or more of the flags that are described in the

following table can be set.

Flag value Meaning

0x01 Lookup is allowed. This flag MUST be set.

0x02 Storage is compressed.

2.5.2.23 XMObject class="XMRENoSplitCompressionInfo<1>"

When the class attribute value for the XMObject element is "XMRENoSplitCompressionInfo<1>",

the object is compressed with XMRENoSplitCompression<1> compression (see section 2.7.1.1), the
XMObject element contains the metadata for the compression, and the type of the XMObject
element is XMRENoSplitCompressionInfo1Type.

<xs:complexType name="XMRENoSplitCompressionInfo1Type">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class"

 type="XMObjectClassNameEnum"

 fixed="XMRENoSplitCompressionInfo<1>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element. Pr
el
im

in
ar

y

129 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

class: An enumeration value that specifies the class name of this XMObject element.

ProviderVersion: The provider version.

2.5.2.23.1 XMRENoSplitCompressionInfoPropertiesType

The XMRENoSplitCompressionInfoPropertiesType complex type contains the properties for
compression with XMRENoSplitCompression or XM123Compression.

<xs:complexType name="XMRENoSplitCompressionInfoPropertiesType">

 <xs:all>

 <xs:element name="Min" type="xs:int"/>

 </xs:all>

</xs:complexType>

Min: The minimum value of the input values that are contained in a compression instance.

2.5.2.24 XMObject class="XMRENoSplitCompressionInfo<2>"

When the class attribute value for the XMObject element is "XMRENoSplitCompressionInfo<2>",
the object is compressed with XMRENoSplitCompression<2> compression (see section 2.7.1.2), the

XMObject element contains the metadata for the compression, and the type of the XMObject
element is XMRENoSplitCompressionInfo2Type.

<xs:complexType name="XMRENoSplitCompressionInfo2Type">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class"

 type="XMObjectClassNameEnum"

 fixed="XMRENoSplitCompressionInfo<2>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

class: An enumeration value that specifies the class name of this XMObject element.

ProviderVersion: The provider version.

2.5.2.25 XMObject class="XMRENoSplitCompressionInfo<3>

When the class attribute value for the XMObject element is "XMRENoSplitCompressionInfo<3>",
the object is compressed with XMRENoSplitCompression<3> compression (see section 2.7.1.3), the
XMObject element contains the metadata for the compression, and the type of the XMObject
element is XMRENoSplitCompressionInfo3Type.

<xs:complexType name="XMRENoSplitCompressionInfo3Type">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" Pr
el
im

in
ar

y

130 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 type="XMObjectClassNameEnum"

 fixed="XMRENoSplitCompressionInfo<3>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.26 XMObject class="XMRENoSplitCompressionInfo<4>

When the class attribute value for the XMObject element is "XMRENoSplitCompressionInfo<4>",
the object is compressed with XMRENoSplitCompression<4> compression (see section 2.7.1.4), the
XMObject element contains the metadata for the compression, and the type of the XMObject
element is XMRENoSplitCompressionInfo4Type.

<xs:complexType name="XMRENoSplitCompressionInfo4Type">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class"

 type="XMObjectClassNameEnum"

 fixed="XMRENoSplitCompressionInfo<4>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.27 XMObject class="XMRENoSplitCompressionInfo<5>

When the class attribute value for the XMObject element is "XMRENoSplitCompressionInfo<5>",

the object is compressed with XMRENoSplitCompression<5> compression (see section 2.7.1.5), the
XMObject element contains the metadata for the compression, and the type of the XMObject
element is XMRENoSplitCompressionInfo5Type.

<xs:complexType name="XMRENoSplitCompressionInfo5Type">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class"

 type="XMObjectClassNameEnum"

 fixed="XMRENoSplitCompressionInfo<5>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element. Pr
el
im

in
ar

y

131 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.28 XMObject class="XMRENoSplitCompressionInfo<6>

When the class attribute value for the XMObject element is "XMRENoSplitCompressionInfo<6>",
the object is compressed with XMRENoSplitCompression<6> compression (see section 2.7.1.6), the
XMObject element contains the metadata for the compression, and the type of the XMObject
element is XMRENoSplitCompressionInfo6Type.

<xs:complexType name="XMRENoSplitCompressionInfo6Type">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class"

 type="XMObjectClassNameEnum"

 fixed="XMRENoSplitCompressionInfo<6>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.29 XMObject class="XMRENoSplitCompressionInfo<7>

When the class attribute value for the XMObject element is "XMRENoSplitCompressionInfo<7>",
the object is compressed with XMRENoSplitCompression<7> compression (see section 2.7.1.7), the
XMObject element contains the metadata for the compression, and the type of the XMObject

element is XMRENoSplitCompressionInfo7Type.

<xs:complexType name="XMRENoSplitCompressionInfo7Type">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class"

 type="XMObjectClassNameEnum"

 fixed="XMRENoSplitCompressionInfo<7>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

Pr
el
im

in
ar

y

132 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.30 XMObject class="XMRENoSplitCompressionInfo<8>

When the class attribute value for the XMObject element is "XMRENoSplitCompressionInfo<8>",
the object is compressed with XMRENoSplitCompression<8> compression (see section 2.7.1.8), the

XMObject element contains the metadata for the compression, and the type of the XMObject
element is XMRENoSplitCompressionInfo8Type.

<xs:complexType name="XMRENoSplitCompressionInfo8Type">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class"

 type="XMObjectClassNameEnum"

 fixed="XMRENoSplitCompressionInfo<8>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.31 XMObject class="XMRENoSplitCompressionInfo<9>

When the class attribute value for the XMObject element is "XMRENoSplitCompressionInfo<9>",
the object is compressed with XMRENoSplitCompression<9> compression (see section 2.7.1.9), the
XMObject element contains the metadata for the compression, and the type of the XMObject
element is XMRENoSplitCompressionInfo9Type.

<xs:complexType name="XMRENoSplitCompressionInfo9Type">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class"

 type="XMObjectClassNameEnum"

 fixed="XMRENoSplitCompressionInfo<9>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.32 XMObject class="XMRENoSplitCompressionInfo<10>

When the class attribute value for the XMObject element is "XMRENoSplitCompressionInfo<10>",
the object is compressed with XMRENoSplitCompression<10> compression (see section 2.7.1.10),

the XMObject element contains the metadata for the compression, and the type of the XMObject
element is XMRENoSplitCompressionInfo10Type. Pr

el
im

in
ar

y

133 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

<xs:complexType name="XMRENoSplitCompressionInfo10Type">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class"

 type="XMObjectClassNameEnum"

 fixed="XMRENoSplitCompressionInfo<10>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.33 XMObject class="XMRENoSplitCompressionInfo<12>

When the class attribute value for the XMObject element is "XMRENoSplitCompressionInfo<12>",
the object is compressed with XMRENoSplitCompression<12> compression (see section 2.7.1.11),
the XMObject element contains the metadata for the compression, and the type of the XMObject
element is XMRENoSplitCompressionInfo12Type.

<xs:complexType name="XMRENoSplitCompressionInfo12Type">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class"

 type="XMObjectClassNameEnum"

 fixed="XMRENoSplitCompressionInfo<12>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.34 XMObject class="XMRENoSplitCompressionInfo<16>

When the class attribute value for the XMObject element is "XMRENoSplitCompressionInfo<16>",

the object is compressed with XMRENoSplitCompression<16> compression (see section 2.7.1.12),
the XMObject element contains the metadata for the compression, and the type of the XMObject
element is XMRENoSplitCompressionInfo16Type.

<xs:complexType name="XMRENoSplitCompressionInfo16Type">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" Pr
el
im

in
ar

y

134 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 type="XMObjectClassNameEnum"

 fixed="XMRENoSplitCompressionInfo<16>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.35 XMObject class="XMRENoSplitCompressionInfo<21>

When the class attribute value for the XMObject element is "XMRENoSplitCompressionInfo<21>",
the object is compressed with XMRENoSplitCompression<21> compression (see section 2.7.1.13),
the XMObject element contains the metadata for the compression, and the type of the XMObject
element is XMRENoSplitCompressionInfo21Type.

<xs:complexType name="XMRENoSplitCompressionInfo21Type">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class"

 type="XMObjectClassNameEnum"

 fixed="XMRENoSplitCompressionInfo<21>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.36 XMObject class="XMRENoSplitCompressionInfo<32>"

When the class attribute value for the XMObject element is "XMRENoSplitCompressionInfo<32>",

the object is compressed with XMRENoSplitCompression<32> compression (see section 2.7.1.14),
the XMObject element contains the metadata for the compression, and the type of the XMObject
element is XMRENoSplitCompressionInfo32Type.

<xs:complexType name="XMRENoSplitCompressionInfo32Type">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class"

 type="XMObjectClassNameEnum"

 fixed="XMRENoSplitCompressionInfo<32>"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element. Pr
el
im

in
ar

y

135 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.37 XMObject class="XM123CompressionInfo"

When the class attribute value for the XMObject element is "XM123CompressionInfo", the object is
compressed with XM123Compression compression (see section 2.7.2.1), the XMObject element
contains the metadata for the compression, and the type of the XMObject element is
XM123CompressionInfoXMObjectType.

<xs:complexType name="XM123CompressionInfoXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMRENoSplitCompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XM123CompressionInfo"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.38 XMRLECompressionInfo

When the class attribute value for the XMObject element is "XMRLECompressionInfo", the object is
compressed with RLE Compression, the XMObject element contains the metadata for the

compression, and the type of the XMObject element is XMRLECompressionInfoXMObjectType.

<xs:complexType name="XMRLECompressionInfoXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMRLECompressionInfoPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMRLECompressionInfo"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.38.1 XMRLECompressionInfoPropertiesType

The XMRLECompressionInfoPropertiesType complex type contains the specific properties that
are allowed when the XMObject element is of class "XMRLECompressionInfo".

<xs:complexType name="XMRLECompressionInfoPropertiesType"> Pr
el
im

in
ar

y

136 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <xs:all>

 <xs:element name="BookmarkBits" type="xs:long"/>

 <xs:element name="StorageAllocSize" type="xs:long"/>

 <xs:element name="StorageUsedSize" type="xs:long"/>

 <xs:element name="SegmentNeedsResizing" type="xs:boolean"/>

 </xs:all>

</xs:complexType>

BookmarkBits: The distance between RLE bookmarks. This value is used to perform a left bit shift

operation on 1, which yields the number of RLE records that are encoded between bookmarks. For
example, if the value is 5, the operation 1 << 5 is performed. The result, 32, would be the number

of RLE records between bookmarks.

StorageAllocSize: The allocated storage size, in 4-byte units, for the segment.

StorageUsedSize: The used storage size, in 4-byte units, for the segment.

SegmentNeedsResizing: A Boolean value that specifies whether an operation has occurred that

requires the segment to be resized. This value MUST be false.

2.5.2.39 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<1>>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<1>>", the object is compressed with hybrid compression and uses
XMRENoSplitCompression<1> compression (section 2.7.3.2), the XMObject element contains the
metadata for the compression, and the type of the XMObject element is

XMHybridCompressionInfo1Type.

<xs:complexType name="XMREHybridCompressionInfo1Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<1>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.39.1 XMHybridRLECompressionInfoMembersType

The XMHybridRLECompressionInfoMembersType complex type holds a collection of Member
items, each of which contains a property for the parent XMObject object.

<xs:complexType name="XMHybridRLECompressionInfoMembersType">

 <xs:sequence> Pr
el
im

in
ar

y

137 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <xs:element name="Member" type="XMHybridRLECompressionInfoMemberType"

 minOccurs="2" maxOccurs="2"/>

 </xs:sequence>

</xs:complexType>

Member: A complex type element that contains a property for the parent XMObject element. The

value of the Name element for the two instances of this element in the Members collection MUST
have one instance of each enumeration value from the

XMHybridRLECompressionInfoMemberNameEnum type (section 2.5.2.39.3).

2.5.2.39.2 XMHybridRLECompressionInfoMemberType

The XMHybridRLECompressionInfoMemberType complex type holds a Member item that
contains information about a complex property of the parent XMObject object.

<xs:complexType name="XMHybridRLECompressionInfoMemberType">

 <xs:sequence>

 <xs:element name="Name"

 type="XMHybridRLECompressionInfoMemberNameEnum"/>

 <xs:element name="XMObject">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="XMObjectTypeBase">

 <xs:attribute name="class"

 type="XMHybridRLECompressionInfoXMObjectMemberClassNameEnum"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

Name: The name of the Member object.

XMObject: A complex type that contains a nested instance of an XMObject element. The type of
the element is an extension of XMObjectTypeBase. However, the actual content allowed in an
instance is constrained and depends on the value of the class attribute of the XMObject element.
The content of the XMObject element MUST follow the constraints depending on its class attribute
value.

class: An enumeration value that specifies the class name of this XMObject element instance.

When the Name element of the Member item has a particular value, the XMObject element of the
Member item is constrained and MUST have a specific value for the class attribute. The following
table lists the constraints between the values of Name and class

Value of Name

element Required value of class attribute

"RLECompression" "XMRLECompressionInfo"

"SubCompression" The class attribute of the XMObject element MUST be either an instance of the
"XM123CompressionInfo" class or an instance of the
"XMNoSplitCompressionInfo<n>" class, where n is the same value as that in the
class of the hybrid compression. For example, if the containing XMObject element
is of class "XMHybridRLECompressionInfo<class Pr
el
im

in
ar

y

138 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Value of Name

element Required value of class attribute

XMRENoSplitCompressionInfo<7>>", n=7 and the class of this XMObject element
MUST be "XMRENoSplitCompressionInfo<7>", where n=7, as well.

2.5.2.39.3 XMHybridRLECompressionInfoMemberNameEnum

The XMHybridCompressionInfoMemberNameEnum simple type enumerates the allowed values
for the name of a Member item in the Members collection of an XMObject object for the hybrid
compression classes.

<xs:simpleType name="XMHybridRLECompressionInfoMemberNameEnum">

 <xs:restriction base="xs:string">

 <xs:enumeration value="RLECompression"/>

 <xs:enumeration value="SubCompression"/>

 </xs:restriction>

</xs:simpleType>

The following table describes the enumeration values in the

XMHybridCompressionInfoMemberNameEnum type.

Enumeration value Description

"RLECompression" The Member item contains information about RLE compression.

"SubCompression" The Member item contains information about subcompression.

2.5.2.39.4 XMHybridRLECompressionInfoXMObjectClassNameEnum

The XMHybridRLECompressionInfoXMObjectMemberClassNameEnum simple type
enumerates the allowed values for the class name of the XMObject element that is contained in a

Member item in the Members collection of an XMSimpleTable object.

<xs:simpleType name="XMHybridRLECompressionInfoXMObjectMemberClassNameEnum">

 <xs:restriction base="XMObjectClassNameEnum">

 <xs:enumeration value="XMRLECompressionInfo"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<1>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<2>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<3>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<4>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<5>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<6>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<7>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<8>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<9>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<10>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<12>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<16>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<21>"/>

 <xs:enumeration value="XMRENoSplitCompressionInfo<32>"/>

 <xs:enumeration value="XM123CompressionInfo"/>

 </xs:restriction>

</xs:simpleType> Pr
el
im

in
ar

y

139 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The following table describes the enumeration values in the

XMHybridRLECompressionInfoXMObjectMemberClassNameEnum type.

Enumeration value Description

"RLECompressionInfo" The XMObject object contains information about RLE
compression.

"XMRENoSplitCompressionInfo<1>" The XMObject object describes XMRENoSplitCompressionInfo<1>
compression. For more information, see section 2.7.1.1.

"XMRENoSplitCompressionInfo<2>" The XMObject object describes XMRENoSplitCompressionInfo<2>
compression. For more information, see section 2.7.1.2.

"XMRENoSplitCompressionInfo<3>" The XMObject object describes XMRENoSplitCompressionInfo<3>
compression. For more information, see section 2.7.1.3.

"XMRENoSplitCompressionInfo<4>" The XMObject object describes XMRENoSplitCompressionInfo<4>
compression. For more information, see section 2.7.1.4.

"XMRENoSplitCompressionInfo<5>" The XMObject object describes XMRENoSplitCompressionInfo<5>
compression. For more information, see section 2.7.1.5.

"XMRENoSplitCompressionInfo<6>" The XMObject object describes XMRENoSplitCompressionInfo<6>
compression. For more information, see section 2.7.1.6.

"XMRENoSplitCompressionInfo<7>" The XMObject object describes XMRENoSplitCompressionInfo<7>
compression. For more information, see section 2.7.1.7.

"XMRENoSplitCompressionInfo<8>" The XMObject object describes XMRENoSplitCompressionInfo<8>
compression. For more information, see section 2.7.1.8.

"XMRENoSplitCompressionInfo<9>" The XMObject object describes XMRENoSplitCompressionInfo<9>
compression. For more information, see section 2.7.1.9.

"XMRENoSplitCompressionInfo<10>" The XMObject object describes
XMRENoSplitCompressionInfo<10> compression . For more
information, see section 2.7.1.10.

"XMRENoSplitCompressionInfo<12>" The XMObject object describes
XMRENoSplitCompressionInfo<12> compression. For more
information, see section 2.7.1.11.

"XMRENoSplitCompressionInfo<16>" The XMObject object describes
XMRENoSplitCompressionInfo<16> compression. For more
information, see section 2.7.1.12.

"XMRENoSplitCompressionInfo<21>" The XMObject object describes
XMRENoSplitCompressionInfo<21> compression. For more
information, see section 2.7.1.13.

"XMRENoSplitCompressionInfo<32>" The XMObject object describes
XMRENoSplitCompressionInfo<32> compression. For more
information, see section 2.7.1.14.

"XM123CompressionInfo" The XMObject object describes XM123CompressionInfo
compression. For more information, see section 2.7.2. Pr

el
im

in
ar

y

140 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.40 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<2>>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<2>>", the object is compressed with hybrid compression and uses
XMRENoSplitCompression<2> compression (see section 2.7.3.3), the XMObject element contains
the metadata for the compression, and the type of the XMObject element is
XMHybridCompressionInfo2Type.

<xs:complexType name="XMREHybridCompressionInfo2Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<2>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.41 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<3>>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<3>>", the object is compressed with hybrid compression and uses
XMRENoSplitCompression<3> compression (see section 2.7.3.4), the XMObject element contains

the metadata for the compression, and the type of the XMObject element is
XMHybridCompressionInfo3Type.

<xs:complexType name="XMREHybridCompressionInfo3Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<2>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element. Pr
el
im

in
ar

y

141 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.42 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<4>>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<4>>", the object is compressed with hybrid compression and uses
XMRENoSplitCompression<4> compression (see section 2.7.3.5), the XMObject element contains
the metadata for the compression, and the type of the XMObject element is
XMHybridCompressionInfo4Type.

<xs:complexType name="XMREHybridCompressionInfo4Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<4>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.43 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<5>>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<5>>", the object is compressed with hybrid compression and uses
XMRENoSplitCompression<5> compression (see section 2.7.3.6), the XMObject element contains

the metadata for the compression, and the type of the XMObject element is
XMHybridCompressionInfo5Type.

<xs:complexType name="XMREHybridCompressionInfo5Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<5>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element. Pr
el
im

in
ar

y

142 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.44 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<6>>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<6>>", the object is compressed with hybrid compression and uses
XMRENoSplitCompression<6> compression (see section 2.7.3.7), the XMObject element contains
the metadata for the compression, and the type of the XMObject element is
XMHybridCompressionInfo6Type.

<xs:complexType name="XMREHybridCompressionInfo6Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<6>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.45 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<7>>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<7>>", the object is compressed with hybrid compression and uses
XMRENoSplitCompression<7> compression (see section 2.7.3.8), the XMObject element contains

the metadata for the compression, and the type of the XMObject element is
XMHybridCompressionInfo7Type.

<xs:complexType name="XMREHybridCompressionInfo7Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<7>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element. Pr
el
im

in
ar

y

143 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.46 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<8>>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<8>>", the object is compressed with hybrid compression and uses
XMRENoSplitCompression<8> compression (see section 2.7.3.9), the XMObject element contains
the metadata for the compression, and the type of the XMObject element is
XMHybridCompressionInfo8Type.

<xs:complexType name="XMREHybridCompressionInfo8Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<8>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.47 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<9>>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<9>>", the object is compressed with hybrid compression and uses
XMRENoSplitCompression<9> compression (see section 2.7.3.10), the XMObject element contains

the metadata for the compression, and the type of the XMObject element is
XMHybridCompressionInfo9Type.

<xs:complexType name="XMREHybridCompressionInfo9Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<9>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element. Pr
el
im

in
ar

y

144 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.48 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<10>>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<10>>", the object is compressed with hybrid compression and uses
XMRENoSplitCompression<10> compression (see section 2.7.3.11), the XMObject element
contains the metadata for the compression, and the type of the XMObject element is
XMHybridCompressionInfo10Type.

<xs:complexType name="XMREHybridCompressionInfo10Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<10>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.49 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<12>>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<12>>", the object is compressed with hybrid compression and uses
XMRENoSplitCompression<12> compression (see section 2.7.3.12), the XMObject element

contains the metadata for the compression, and the type of the XMObject element is
XMHybridCompressionInfo12Type.

<xs:complexType name="XMREHybridCompressionInfo12Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<12>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element. Pr
el
im

in
ar

y

145 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.50 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<16>>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<16>>", the object is compressed with hybrid compression and uses
XMRENoSplitCompression<16> compression (see section 2.7.3.13), the XMObject element
contains the metadata for the compression, and the type of the XMObject element is
XMHybridCompressionInfo16Type.

<xs:complexType name="XMREHybridCompressionInfo16Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<16>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.51 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<21>>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<21>>", the object is compressed with hybrid compression and uses
XMRENoSplitCompression<21> compression (see section 2.7.3.14), the XMObject element

contains the metadata for the compression, and the type of the XMObject element is
XMHybridCompressionInfo21Type.

 <xs:complexType name="XMREHybridCompressionInfo21Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<21>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element. Pr
el
im

in
ar

y

146 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.52 XMObject class="XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<32>>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<32>>", the object is compressed with hybrid compression and uses
XMRENoSplitCompression<32> compression (see section 2.7.3.15), the XMObject element
contains the metadata for the compression, and the type of the XMObject element is
XMHybridCompressionInfo32Type.

<xs:complexType name="XMREHybridCompressionInfo32Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<32>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.53 XMObject class="XMHybridRLECompressionInfo<class

XM123CompressionInfo>"

When the class attribute value for the XMObject element is "XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo< XM123CompressionInfo>>", the object is compressed with hybrid
compression and uses XM123 compression (see section 2.7.3.16), the XMObject element contains

the metadata for the compression, and the type of the XMObject element is
XMHybridCompressionInfoXM123Type.

<xs:complexType name="XMREHybridCompressionInfoXM123Type">

 <xs:all>

 <xs:element name="Members"

 type="XMHybridRLECompressionInfoMembersType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<XM123CompressionInfo>>"/>

</xs:complexType>

Members: A collection of Member items, each of which contains a complex property for the

XMObject element.

ProviderVersion: The provider version.

class: An enumeration value that specifies the class name of this XMObject element. Pr
el
im

in
ar

y

147 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.2.54 XMObject class="ColumnSegmentStats"

When the class attribute value for the XMObject element is "XMColumnSegmentStats", the
XMObject element contains statistical information for a column segment, and the type of the

XMObject element is XMColumnSegmentStatsXMObjectType.

<xs:complexType name="XMColumnSegmentStatsXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMColumnSegmentStatsPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMColumnSegmentStats"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

name: The name of the XMRawColumnPartitionDataObject object.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.54.1 XMColumnSegmentStatsPropertiesType

The XMColumnSegmentStatsPropertiesType complex type contains the specific properties that
are allowed when the XMObject element is of class "XMColumnSegmentStats".

<xs:complexType name="XMColumnSegmentStatsPropertiesType">

 <xs:all>

 <xs:element name="DistinctStates" type="xs:long"/>

 <xs:element name="MinDataID" type="xs:int"/>

 <xs:element name="MaxDataID" type="xs:int"/>

 <xs:element name="OriginalMinSegmentDataID" type="xs:int"/>

 <xs:element name="RLESortOrder" type="xs:long"/>

 <xs:element name="RowCount" type="xs:long"/>

 <xs:element name="HasNulls" type="xs:boolean"/>

 <xs:element name="RLERuns" type="xs:long"/>

 <xs:element name="OthersRLERuns" type="xs:long"/>

 </xs:all>

</xs:complexType>

DistinctStates: The number of distinct values, including NULL, in the column segment.

MinDataID: The minimum data identifier for the column segment.

MaxDataID: An integer value that specifies the maximum data identifier for the column segment.

OriginalMinSegmentDataID: The minimum data identifier for a segment.

RLESortOrder: A value that is unused, MUST be–1, and MUST be ignored.

RowCount: The count of rows in this segment. Pr
el
im

in
ar

y

148 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

HasNulls: A Boolean value that specifies whether the segment has NULL values.

RLERuns: The number of RLE runs.

OthersRLERuns: The number of RLE runs that are not solid runs. A solid run is a run of
consecutive, identical values that can be compressed by RLE techniques.

2.5.2.55 XMObject class="XMRawColumnPartitionDataObject"

When the class attribute value for the XMObject element is "XMRawColumnPartitionDataObject",
the XMObject element contains information about the partition for the data object, and the type of
the XMObject element is XMRawColumnPartitionDataObjectXMObjectType.

<xs:complexType name="XMRawColumnPartitionDataObjectXMObjectType">

 <xs:all>

 <xs:element name="Properties"

 type="XMRawColumnPartitionDataObjectPropertiesType"/>

 </xs:all>

 <xs:attribute name="ProviderVersion" type="xs:int"/>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="class" type="XMObjectClassNameEnum"

 fixed="XMRawColumnPartitionDataObject"/>

</xs:complexType>

Properties: A collection of properties for the XMObject element.

ProviderVersion: The provider version.

name: The name of the XMRawColumnPartitionDataObject object.

class: An enumeration value that specifies the class name of this XMObject element.

2.5.2.55.1 XMRawColumnPartitionDataObjectPropertiesType

The XMRawColumnPartitionDataObjectPropertiesType complex type contains the specific

properties that are allowed when the XMObject element is of class
"XMRawColumnPartitionDataObject".

<xs:complexType name="XMRawColumnPartitionDataObjectPropertiesType">

 <xs:all>

 <xs:element name="DataVersion" type="xs:int"/>

 <xs:element name="Partition" type="xs:int"/>

 <xs:element name="SegmentCount" type="xs:int"/>

 </xs:all>

</xs:complexType>

DataVersion: The internal version number for this data. This version number is not required to

match the version numbers of other objects within the same table or column.

Partition: An incremental number that identifies for the partition.

SegmentCount: The count of segments in the partition. Pr
el
im

in
ar

y

149 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.5.3 Contents of the .tbl.xml Files

Each file that contains metadata for a table (.tbl.xml file) contains an XMSimpleTable object. These
table metadata files differ according to which columns exist in the Columns collection of the

XMSimpleTable object. The following table specifies which columns exist for each type of table
metadata file.

Type of table

metadata file Example file name Columns collection content

Hierarchy file 10.H$Table-Diet$wt.0.tbl.xml One column collection item for each of the
system-generated hierarchy indexes: ID_TO_POS
and POS_TO_ID.

User hierarchy
file

10.U$Hierarchy1.0.tbl.xml One column collection item for each of the
system-generated user hierarchy columns:
CHILD_COUNT, FIRST_CHILD_POS, and
MULTI_LEVEL_ID, PARENT_POS.

Relationship file R$Table-Diet$ec91bf00-f577-
4c86-b7f8-
8c5dcd44a2ac.64.tbl.xml

One column collection item for the system-
generated relationship file column: INDEX.

Table file Table-Diet.31.tbl.xml One column collection item for each column in
the source data table.

2.6 Model OLAP Files

The tables contained in one model are represented as an OLAP cube. The OLAP cube metadata for
the model is contained in a set of XML files. These files are derived from metadata complex type
definitions, as specified in [MS-SSAS] section 2.2.4.2.2, and modified as specified in the following
subsections.

2.6.1 Load Element Document Node

Every model OLAP file has a Load element as the document node of the XML document. The Load
element serves as the document node for the remainder of the OLAP object metadata description.
The content of the Load element is analogous to the content of the Create command on the OLAP
server, as specified in [MS-SSAS] section 3.1.4.3.2.1.1.3.

<xs:element name="Load" type="LoadElementType"/>

<xs:complexType name="LoadElementType">

 <xs:all>

 <xs:element name="ParentObject" type="ObjectReferenceTabularModel"/>

 <xs:element name="ObjectDefinition" type="MajorObjectTabularModel"/>

 </xs:all>

</xs:complexType>

ParentObject: A reference, as specified in section 2.6.1.2, to the parent of the object that is

defined by the ObjectDefinition element.

ObjectDefinition: A complex type element, as specified in section 2.6.1.1, that contains the
definition of an OLAP object. Pr

el
im

in
ar

y

%5bMS-OFCGLOS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf

150 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.6.1.1 MajorObjectTabularModel

The MajorObjectTabularModel complex type defines an OLAP major object. This type is analogous
to the MajorObject type, as specified in [MS-SSAS] section 2.2.4.2.2.1, but contains fewer objects

that are available to be defined within the xs:choice element. Additionally, the types of the
elements extend the types as specified in [MS-SSAS] to add elements for tabular models.

<xs:complexType name="MajorObjectTabularModel">

 <xs:choice>

 <xs:element name="Cube" type="CubeTabularModel"/>

 <xs:element name="Database" type="DatabaseTabularModel"/>

 <xs:element name="DataSource" type="DataSourceTabularModel"/>

 <xs:element name="DataSourceView" type="DataSourceViewTabularModel"/>

 <xs:element name="Dimension" type="DimensionTabularModel"/>

 <xs:element name="MdxScript" type="MdxScriptTabularModel"/>

 <xs:element name="MeasureGroup" type="MeasureGroupTabularModel"/>

 <xs:element name="Partition" type="PartitionTabularModel"/>

 </xs:choice>

</xs:complexType>

Cube: An element of type CubeTabularModel (section 2.6.5), which is an extension of the Cube

type ([MS-SSAS] section 2.2.4.2.2.9).

Database: An element of type DatabaseTabularModel (section 2.6.4), which is an extension of
the Database type ([MS-SSAS] section 2.2.4.2.2.5).

DataSource: An element of type DataSourceTabularModel (section 2.6.2), which is an extension

of the DataSource type ([MS-SSAS] section 2.2.4.2.2.6).

DataSourceView: An element of type DataSourceViewTabularModel (section 2.6.3), which is an
extension of the DataSourceView type ([MS-SSAS] section 2.2.4.2.2.7).

Dimension: An element of type DimensionTabularModel (section 2.6.6), which is an extension of
the Dimension type ([MS-SSAS] section 2.2.4.2.2.8).

MdxScript: An element of type MdxScriptTabularModel (section 2.6.9), which is an extension of
the MdxScript type ([MS-SSAS] section 2.2.4.2.2.10).

MeasureGroup: An element of type MeasureGroupTabularModel (section 2.6.7), which is an
extension of the MeasureGroup type ([MS-SSAS] section 2.2.4.2.2.11).

Partition: An element of type PartitionTabularModel (section 2.6.8), which is an extension of the
Partition type ([MS-SSAS] section 2.2.4.2.2.13).

2.6.1.2 ObjectReferenceTabularModel

The ObjectReferenceTabularModel complex type specifies the parent object of the object that is

being described. This type is a subset of the ObjectReference type as specified in [MS-SSAS]
section 3.1.4.3.2.1.1.1.

<xs:complexType name="ObjectReferenceTabularModel">

 <xs:all>

 <xs:element name="DatabaseID" type="xs:string" minOccurs="0"/>

 <xs:element name="CubeID" type="xs:string" minOccurs="0"/>

 </xs:all> Pr
el
im

in
ar

y

%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf

151 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

</xs:complexType>

DatabaseID: An element as specified in [MS-SSAS] section 3.1.4.3.2.1.1.1.

CubeID: An element as specified in [MS-SSAS] section 3.1.4.3.2.1.1.1.

2.6.1.3 TabularModelElementsGroup Group

The TabularModelElementsGroup group contains a group of elements that have been added to
many of the OLAP major object types, for the case of the tabular model.

<xs:group name="TabularModelElementsGroup">

 <xs:sequence>

 <xs:element name="Ordinal" type="xs:int"/>

 <xs:element name="PersistLocation" type="xs:int"/>

 <xs:element name="System" type="xs:boolean"/>

 <xs:element name="DataFileList" type="xs:string"/>

 </xs:sequence>

</xs:group>

Ordinal: The position of this object within the collection of objects of this type.

PersistLocation: The version number that will appear within the file name. For example, if the
value is "10" for a dimension object, the file name will end in "10.dim.xml".

System: A Boolean value that MUST be set to false.

DataFileList: A semicolon-separated list of all the data files materialized for this object.

2.6.2 DataSourceTabularModel

The DataSourceTabularModel complex type is extended from the DataSource base type, as

specified in [MS-SSAS] section 2.2.4.2.2.6. The DataSource base type is an abstract type and has
two types derived from it, both of which can be used in the data source definition. They are the
OlapDataSource type, as specified in [MS-SSAS] section 2.2.4.2.2.6.2, and the

RelationalDataSource type, as specified in [MS-SSAS] section 2.2.4.2.2.6.1.

The data source definition is contained in a data source definition XML file. An example of a
generated data source definition XML file name is PushedDataSource-F052E9FD-98DA-441C-A0C0-
B84DA82E5F25.0.ds.xml.

Every tabular model MUST have a data source defined.

<xs:complexType name="DataSourceTabularModel">

 <xs:complexContent>

 <xs:extension base="DataSource">

 <xs:sequence>

 <xs:group ref="TabularModelElementsGroup"/>

 <xs:element name="PermissionFileList" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType> Pr
el
im

in
ar

y

%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf

152 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

TabularModelElementsGroup: A group of elements that is added to base OLAP types for the

tabular model derivations from those types. For more details, see section 2.6.1.3.

PermissionFileList: A semicolon-separated list of the files included in the tabular model metadata
that define user permissions for the data source.

2.6.3 DataSourceViewTabularModel

The DataSourceViewTabularModel complex type is extended from the DataSourceView base
type, as specified in [MS-SSAS] section 2.2.4.2.2.7.

The data source view definition is contained in a data source view definition XML file. An example of
a generated data source view definition XML file name is Sandbox.0.dsv.xml.

Every tabular model MUST have a data source view defined.

<xs:complexType name="DataSourceViewTabularModel">

 <xs:complexContent>

 <xs:extension base="DataSourceView">

 <xs:sequence>

 <xs:group ref="TabularModelElementsGroup"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

TabularModelElementsGroup: A group of elements that is added to base OLAP types for the

tabular model derivations from those types. For more details, see section 2.6.1.3.

2.6.4 DatabaseTabularModel

The DatabaseTabularModel complex type is extended from the Database base type, as specified
in [MS-SSAS] section 2.2.4.2.2.5.

The database definition is contained in a database definition XML file. An example of a generated
database definition XML file name is ImportDiet2.db.xml.

Every tabular model MUST have a database defined.

<xs:complexType name="DatabaseTabularModel">

 <xs:complexContent>

 <xs:extension base="Database">

 <xs:sequence>

 <xs:group ref="TabularModelElementsGroup"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

TabularModelElementsGroup: A group of elements that is added to base OLAP types for the

tabular model derivations from those types. For more details, see section 2.6.1.3.

Pr
el
im

in
ar

y

%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf

153 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.6.5 CubeTabularModel

The CubeTabularModel complex type is extended from the Cube base type, as specified in [MS-
SSAS] section 2.2.4.2.2.9.

The OLAP cube definition is contained in a cube definition XML file. An example of a generated cube
definition XML file name is Model.33.cub.xml.

Every tabular model MUST have a cube defined.

When the cube is defined for a tabular model, the following rules MUST be followed:

Each table that is included in the tabular model MUST be defined in the cube’s Dimensions

collection as a Dimension of type CubeDimension, as specified in [MS-SSAS] section

2.2.4.2.2.9.1.

Each column in each table MUST be defined in the cube’s Attributes collection as an Attribute

of type CubeAttribute, as specified in [MS-SSAS] section 2.2.4.2.2.9.2.

<xs:complexType name="CubeTabularModel">

 <xs:complexContent>

 <xs:extension base="Cube">

 <xs:sequence>

 <xs:group ref="TabularModelElementsGroup"/>

 <xs:element name="PermissionFileList" type="xs:string"/>

 <xs:element name="MeasureGroupFileList" type="xs:string"/>

 <xs:element name="PerspectiveFileList" type="xs:string"/>

 <xs:element name="AssemblyFileList" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

TabularModelElementsGroup: A group of elements that is added to base OLAP types for the

tabular model derivations from those types. For more details, see section 2.6.1.3.

PermissionFileList: A semicolon-separated list of the files included in the tabular model metadata
that define user permissions for the model.

MeasureGroupFileList: A semicolon-separated list of the files included in the tabular model

metadata that define the measure groups for the model.

PerspectiveFileList: A semicolon-separated list of the files included in the tabular model metadata
that define perspectives for the model.

AssemblyFileList: A semicolon-separated list of the files included in the tabular model metadata
that define assemblies for the model.

2.6.6 DimensionTabularModel

The DimensionTabularModel type is extended from the Dimension base type, as specified in
[MS-SSAS] section 2.2.4.2.2.8.

The dimension definition is contained in a dimension definition XML file. An example of a generated
dimension definition XML file name is Table-Diet.64.dim.xml.

Every tabular model MUST have a dimension defined. Pr
el
im

in
ar

y

%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-SSAS%5d.pdf

154 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

A dimension MUST be defined for every table that is included in the tabular model.

The dimension MUST follow the following rules:

An Attribute element of type DimensionAttribute, as specified in [MS-SSAS] section

2.2.4.2.2.8.1, MUST be defined for every column in the table.

If the dimension represents a table that is a primary table in a table relationship, a

Relationships collection of type Relationships, as specified in [MS-SSAS] section 2.2.4.2.2.8,
MUST contain a Relationship element of type Relationship, as specified in [MS-SSAS] section
2.2.4.2.2.8.3, for each relationship defined in the tabular model.

<xs:complexType name="DimensionTabularModel">

 <xs:complexContent>

 <xs:extension base="Dimension">

 <xs:sequence>

 <xs:group ref="TabularModelElementsGroup"/>

 <xs:element name="PermissionFileList" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

TabularModelElementsGroup: A group of elements that is added to base OLAP types for the

tabular model derivations from those types. For more details, see section 2.6.1.3.

PermissionFileList: A semicolon-separated list of the files included in the tabular model metadata
that define user permissions for the dimension.

2.6.7 MeasureGroupTabularModel

The MeasureGroupTabularModel type is from the MeasureGroup base type, as specified in [MS-

SSAS] section 2.2.4.2.2.11.

The measure group definition is contained in a measure group definition XML file. An example of a
generated measure group definition XML file name is Table-Diet.64.det.xml.

Every tabular model MUST have at least one measure group defined.

A measure group MUST be defined for every table in the tabular model.

Measure group definitions MUST follow the following rules:

The measure group MUST contain a Dimension element of type

DegenerateMeasureGroupDimension, as specified in [MS-SSAS] section 2.2.4.2.2.11.1.4.

DegenerateMeasureGroupDimension MUST have an Attribute element of type

MeasureGroupDimensionAttribute, as specified in [MS-SSAS] section 2.2.4.2.2.11.2, defined
for every column in the table.

If the table is a primary table in a table relationship, the measure group MUST have a

Dimension element of type ReferenceMeasureGroupDimension, as specified in [MS-SSAS]
section 2.2.4.2.2.11.1.3.

ReferenceMeasureGroupDimension MUST have an Attribute element of type

MeasureGroupDimensionAttribute, as specified in [MS-SSAS] section 2.2.4.2.2.11.2, defined
for every column in the related table. Pr
el
im

in
ar

y

%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf

155 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

<xs:complexType name="MeasureGroupTabularModel">

 <xs:complexContent>

 <xs:extension base="MeasureGroup">

 <xs:sequence>

 <xs:group ref="TabularModelElementsGroup"/>

 <xs:element name="AggregationDesignFileList" type="xs:string"/>

 <xs:element name="PartitionFileList" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

TabularModelElementsGroup: A group of elements that is added to base OLAP types for the

tabular model derivations from those types. For more details, see section 2.6.1.3.

AggregationDesignFileList: A semicolon-separated list of the files included in the tabular model

metadata that define AggregationDesign objects for the model.

PartitionFileList: A semicolon-separated list of the files included in the tabular model metadata
that define partitions for the model.

2.6.8 PartitionTabularModel

The PartitionTabularModel type is extended from the Partition base type, as specified in [MS-
SSAS] section 2.2.4.2.2.13.

The partition (2) definition is contained in a partition definition XML file. An example of a generated
partition definition XML file name is Table-LatLong.1.prt.xml.

Every tabular model MUST have at least one partition defined.

A partition MUST be defined for every table in the tabular model.

<xs:complexType name="PartitionTabularModel">

 <xs:complexContent>

 <xs:extension base="Partition">

 <xs:sequence>

 <xs:group ref="TabularModelElementsGroup"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

TabularModelElementsGroup: A group of elements that is added to base OLAP types for the

tabular model derivations from those types. For more details, see section 2.6.1.3.

2.6.9 MdxScriptTabularModel

The MdxScriptTabularModel complex type extends the MdxScript base type, as specified in [MS-

SSAS] section 2.2.4.2.2.10.

The multidimensional expression (MDX) script definition is contained in an MDX script definition XML

file. An example of a generated MDX script definition XML file name is MdxScript.0.scr.xml.

Every tabular model MUST have an MDX script defined. Pr
el
im

in
ar

y

%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf

156 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Every MDX script MUST contain a command that defines at least one measure. The measure
MAY<8> be defined with the following command:

<Command>

 <Text>

 CALCULATE;

 CREATE MEMBER CURRENTCUBE.Measures.[__Count of Models] AS 1;

 ALTER CUBE CURRENTCUBE UPDATE DIMENSION Measures,

 Default_Member = [__Count of Models];

 </Text>

</Command>

The MdxScriptTabularModel complex type is defined as follows:

<xs:complexType name="MdxScriptTabularModel">

 <xs:complexContent>

 <xs:extension base="MdxScript">

 <xs:sequence>

 <xs:group ref="TabularModelElementsGroup"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

TabularModelElementsGroup: A group of elements that is added to base OLAP types for the
tabular model derivations from those types. For more details, see section 2.6.1.3.

2.6.10 OLAP Information Files

In addition to the standard OLAP metadata information that is contained in the Dimension object
(see section 2.6.6) and the Partition object (see section 2.6.8), an information file is generated
that contains additional metadata information for those objects.

2.6.10.1 Partition Information File

The additional metadata information for the Partition object is contained in a partition information
XML file. An example of a generated partition information XML file name is Info.33.xml.

The document node in the partition information file contains a Partition element.

<xs:element name="Partition" type="PartitionInformationType"/>

Partition: A complex type element that specifies additional metadata information for the partition.

2.6.10.1.1 PartitionInformationType

The PartitionInformationType complex type holds additional metadata information about the

partition, beyond the metadata information that is contained in the OLAP Partition object (section
2.6.8).

<xs:complexType name="PartitionInformationType">

 <xs:sequence>

 <xs:element name="DataVersion" type="xs:int"/> Pr
el
im

in
ar

y

157 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <xs:element name="RigidAggVersion" type="xs:int"/>

 <xs:element name="FlexAggVersion" type="xs:int"/>

 <xs:element name="DataIndexVersion" type="xs:int"/>

 <xs:element name="RigidIndexVersion" type="xs:int"/>

 <xs:element name="FlexIndexVersion" type="xs:int"/>

 </xs:sequence>

</xs:complexType>

DataVersion: The internal version number for this object. This version number is not required to

match the version numbers of other objects within the same table or column.

RigidAggVersion: A value that is unused and MUST be ignored.

FlexAggVersion: A value that is unused and MUST be ignored.

DataIndexVersion: A value that is unused and MUST be ignored.

RigidIndexVersion: A value that is unused and MUST be ignored.

FlexIndexVersion: A value that is unused and MUST be ignored.

2.6.10.2 Dimension Information File

The additional metadata information for the Dimension object is contained in a dimension
information XML file. An example of a generated Dimension information XML file name is
Info.33.xml.

The document node in the dimension information file contains a Dimension element.

<xs:element name="Dimension" type="DimensionInformationType"/>

Dimension: A complex type element that specifies additional metadata information for the

dimension.

2.6.10.2.1 DimensionInformationType

The DimensionInformationType complex type holds additional metadata information about the
dimension, beyond the metadata information contained in the OLAP Dimension object (section
2.6.6).

<xs:complexType name="DimensionInformationType">

 <xs:sequence>

 <xs:element name="DataVersion" type="xs:int"/>

 <xs:element name="IndexVersion" type="xs:int"/>

 <xs:element name="DecodeStoreVersion" type="xs:int"/>

 <xs:element name="LevelStoreVersion" type="xs:int"/>

 <xs:element name="Properties"

 type="DimensionInformationPropertiesType"/>

 </xs:sequence>

</xs:complexType>

DataVersion: The internal version number for this object. This version number is not required to
match the version numbers of other objects within the same table or column. Pr

el
im

in
ar

y

158 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

IndexVersion: A value that is unused and MUST be ignored.

DecodeStoreVersion: A value that is unused and MUST be ignored.

LevelStoreVersion: A value that is unused and MUST be ignored.

Properties: A complex type element that specifies additional properties for the dimension.

2.6.10.2.1.1 DimensionInformationPropertiesType

The DimensionInformationPropertiesType complex type holds a collection of properties for the
dimension.

<xs:complexType name="DimensionInformationPropertiesType">

 <xs:sequence>

 <xs:element name="Property" type="DimensionInformationPropertyType"

 maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

Property: A complex type that specifies a single property in the properties collection for dimension

information.

2.6.10.2.1.1.1 DimensionInformationPropertyType

The DimensionInformationPropertyType complex type specifies the information for one property
instance for the dimension information object.

<xs:complexType name="DimensionInformationPropertyType">

 <xs:sequence>

 <xs:element name="ParentChild" type="xs:boolean"/>

 <xs:element name="Depth" type="xs:int"/>

 <xs:element name="Balanced" type="xs:boolean"/>

 <xs:element name="HasHoles" type="xs:boolean"/>

 <xs:element name="MapDataset"

 type="DimensionInformationPropertyMapDatasetType"/>

 </xs:sequence>

</xs:complexType>

ParentChild: A value that is unused and MUST be ignored.

Depth: A value that is unused and MUST be ignored.

Balanced: A value that is unused and MUST be ignored.

HasHoles: A value that is unused and MUST be ignored.

MapDataset: A complex type that specifies additional mapping information for dimension
information properties.

2.6.10.2.1.1.2 DimensionInformationMapDataSetType

The DimensionInformationMapDatasetType specifies the property information for a dataset
map. Pr

el
im

in
ar

y

159 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

<xs:complexType name="DimensionInformationPropertyMapDatasetType">

 <xs:sequence>

 <xs:element name="m_cbOffsetHeader" type="xs:long"/>

 <xs:element name="m_cbOffsetData" type="xs:long"/>

 <xs:element name="m_cRecord" type="xs:long"/>

 <xs:element name="m_cSegment" type="xs:long"/>

 <xs:element name="m_mskFormat" type="xs:long"/>

 <xs:element name="m_cbHeader" type="xs:long"/>

 <xs:element name="m_cPath" type="xs:long"/>

 <xs:element name="m_cData" type="xs:long"/>

 <xs:element name="m_cSegmentIndex" type="xs:long"/>

 <xs:element name="MapDataIndices" type="xs:long"/>

 <xs:element name="MinMaxValues" type="xs:long"/>

 </xs:sequence>

</xs:complexType>

m_cbOffsetHeader: A value that is unused and MUST be ignored.

m_cbOffsetData: A value that is unused and MUST be ignored.

m_cRecord: A value that is unused and MUST be ignored.

m_cSegment: A value that is unused and MUST be ignored.

m_mskFormat: A value that is unused and MUST be ignored.

m_cbHeader: A value that is unused and MUST be ignored.

m_cPath: A value that is unused and MUST be ignored.

m_cData: A value that is unused and MUST be ignored.

m_cSegmentIndes: A value that is unused and MUST be ignored.

MapDataIndicies: A value that is unused and MUST be ignored.

MinMaxValues: A value that is unused and MUST be ignored.

2.6.10.3 Cube Information File

The additional metadata information for the Cube object is contained in a cube information XML file.

An example of a generated cube information XML file name is Info.21.xml.

The document node in the cube information file contains a Cube element.

<xs:element name="Cube" type="CubeInformationType"/>

Cube: A complex type element that specifies additional metadata information for the cube.

2.6.10.3.1 CubeInformationType

The CubeInformationType complex type is empty.

<xs:complexType name="CubeInformationType">

 <xs:sequence>

 </xs:sequence> Pr
el
im

in
ar

y

160 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

</xs:complexType>

CubeInformationType contains no elements.

2.7 Compression

All data structures except for XML files are compressed. The compression algorithms are described
in the following subsections. If the decompression algorithm is not simply a reversal of the
compression algorithm, the decompression algorithm is also explained.

2.7.1 XMRENoSplit Compression Algorithms

XMRENoSplit compression algorithms use range encoding, in which the algorithms use a minimum
offset plus only the necessary number of bits to encode the entire range of data values, after the
range’s reduction by that minimum offset. This procedure reduces the numeric size of the values to
be stored and, therefore, the number of bits that are required to hold each value. After this range
reduction, a form of bit packing compression is used for which the data to be stored is compacted

into a specified number of bits.

The storage area for the compressed value MUST be zeroed out prior to compressing the value and
storing it in that area.

2.7.1.1 XMRENoSplitCompressionInfo<1>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMRENoSplitCompressionInfo<1>, as specified in
section 2.5.2.23.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each

compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see

section 2.2.2.3.2.

To simply this explanation, the process is divided into three phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.23). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the
resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a

multiple of 1.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the compressed storage (compressedStorage) is combined through a bitwise AND
operation with a masking value, resulting in a masked off compressedStorage that is named
maskedStorage. The masking value, named maskArrayValue, is found in the masking array named
maskArray, as specified in section 5. The index into this array to obtain the correct masking value is

calculated in the following manner: the bit count (in this case, 1) is multiplied by the storage data Pr
el
im

in
ar

y

161 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

size (64 bits), and then a bitwise OR operation is performed on the multiplication result and the
current offset into the storage area (startBit).

The following pseudocode illustrates this phase:

SET maskArrayValue = maskArray at index [((1) MULTIPLY (64)) BITWISE_OR (startBit)]

SET maskedStorage = (compressedStorage) BITWISE_AND (maskArrayValue)

In Phase 3, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the masked and compressed storage (maskedStorage).
This operation generates the final result, named maskedStorageWithValue.

The following pseudocode illustrates this phase:

SET maskedStorageWithValue = (maskedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,

however, individual values are placed low to high, with the first value occupying the lowest bits, the

second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

Decompression does not require the use of the mask. One way to decompress a value that has been
compressed with this compression method is to right bit shift the masked storage containing the

value by the current offset into the storage, perform a bitwise AND operation on the result of the
value 0xFFFFFFFFFFFFFFFF right bit shifted by 63, and then add Min.

Using the same definitions as earlier, the following pseudocode illustrates one way to decompress
and retrieve the original compressed value from the storage:

SET idVal = Min + ((maskedStorageWithValue RIGHT_BITSHIFT startBit) BITWISE_AND
(0xFFFFFFFFFFFFFFFF RIGHT_BITSHIFT 63))

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

...

values (8 bytes): The set of values, each occupying 1 bit, in sequence and ordered low to high.
In the sequence, the first value occupies Bit 0, the second value occupies Bit 1, and so on.

The startBit offset followed the sequence of Bit 0, 1, 2, and so on, up to Bit 63 as the data
was compressed into the 64-bit storage area. Any unused bits are thus only padding, and the
value of the padding depends on the result of the various masking effects. For this

compression algorithm, at most 64 values exist in the 64-bit compressed storage value, and
the process will begin again at Offset 0 with the next compressedStorage value.

Pr
el
im

in
ar

y

162 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.7.1.2 XMRENoSplitCompressionInfo<2>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMRENoSplitCompressionInfo<2>, as specified in

section 2.5.2.24.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see

section 2.2.2.3.2.

To simply this explanation, the process is divided into three phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the

compressed data (see section 2.5.2.24). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the

resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 2.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the compressed storage, compressedStorage, is combined through a bitwise AND
operation with a masking value, resulting in a masked off compressedStorage that is named
maskedStorage. The masking value, named maskArrayValue, is found in the masking array named

maskArray, as specified in section 5. The index into this array to obtain the correct masking value is
calculated in the following manner: the bit count (in this case, 2) is multiplied by the storage data
size (64 bits), and then a bitwise OR operation is performed on the multiplication result and the
current offset into the storage area (startBit).

The following pseudocode illustrates this phase:

SET maskArrayValue = maskArray at index [((2) MULTIPLY (64)) BITWISE_OR (startBit)]

SET maskedStorage = (compressedStorage) BITWISE_AND (maskArrayValue)

In Phase 3, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the masked and compressed storage (maskedStorage).
This operation generates the final result, named maskedStorageWithValue.

The following pseudocode illustrates this phase:

SET maskedStorageWithValue = (maskedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,

however, individual values are placed low to high, with the first value occupying the lowest bits, the

second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

Decompression does not require the use of the mask. One way to decompress a value that has been
compressed with this compression method is to right bit shift the masked storage containing the Pr

el
im

in
ar

y

163 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

value by the current offset into the storage, perform a bitwise AND operation on the result of the
value 0xFFFFFFFFFFFFFFFF right bit shifted by 62, and then add Min.

Using the same definitions as earlier, the following pseudocode illustrates one way to decompress
and retrieve the original compressed value from the storage:

SET idVal = Min + ((maskedStorageWithValue RIGHT_BITSHIFT startBit) BITWISE_AND
(0xFFFFFFFFFFFFFFFF RIGHT_BITSHIFT 62))

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

...

values (8 bytes): The set of values, each occupying 2 bits, in sequence and ordered low to
high. In the sequence, the first value occupies Bits 0 through 1, the second value occupies
Bits 2 through 3, and so on.

The startBit offset followed the sequence of Bit 0, 2, 4, and so on, up to Bit 62 as the data

was compressed into the 64-bit storage area. Any unused bits are thus only padding, and the
value of the padding depends on the result of the various masking effects. For this
compression algorithm, at most 32 values exist in the 64-bit compressed storage value, and
the process will begin again at Offset 0 with the next compressedStorage value.

2.7.1.3 XMRENoSplitCompressionInfo<3>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMRENoSplitCompressionInfo<3>, as specified in

section 2.5.2.25.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each

compressedStorage data value (the section of storage being written to) is 64 bits in size. For more
details about the actual values that are compressed by using this type of compression, see section
2.2.2.3.2.

To simply this explanation, the process is divided into three phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.25). The result of this subtraction (idVal - Min) is then left bit

shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the

resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 3.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit Pr
el
im

in
ar

y

164 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

In Phase 2, the compressed storage, compressedStorage, is combined through a bitwise AND
operation with a masking value, resulting in a masked off compressedStorage that is named

maskedStorage. The masking value, named maskArrayValue, is found in the masking array named
maskArray, as specified in section 5. The index into this array to obtain the correct masking value is

calculated in the following manner: the bit count (in this case, 3) is multiplied by the storage data
size (64 bits), and then a bitwise OR operation is performed on the multiplication result and the
current offset into the storage area (startBit).

The following pseudocode illustrates this phase:

SET maskArrayValue = maskArray at index [((3) MULTIPLY (64)) BITWISE_OR (startBit)]

SET maskedStorage = (compressedStorage) BITWISE_AND (maskArrayValue)

In Phase 3, the data value is placed into the compressed storage. A bitwise OR operation is

performed on the value (shiftedVal) and the masked and compressed storage (maskedStorage).
This operation generates the final result, named maskedStorageWithValue.

The following pseudocode illustrates this phase:

SET maskedStorageWithValue = (maskedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the

second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

Decompression does not require the use of the mask. One way to decompress a value that has been
compressed with this compression method is to right bit shift the masked storage containing the
value by the current offset into the storage, perform a bitwise AND operation on the result of the
value 0xFFFFFFFFFFFFFFFF right bit shifted by 61, and then add Min.

Using the same definitions as earlier, the following pseudocode illustrates one way to decompress
and retrieve the original compressed value from the storage:

SET idVal = Min + ((maskedStorageWithValue RIGHT_BITSHIFT startBit) BITWISE_AND
(0xFFFFFFFFFFFFFFFF RIGHT_BITSHIFT 61))

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

... A

values (63 bits): The set of values, each occupying 3 bits, in sequence and ordered low to high.

In the sequence, the first value occupies Bits 0 through 2, the second value occupies Bits 3

through 5, and so on.

The startBit offset followed the sequence of Bit 0, 3, 6, and so on, up to Bit 60 as the data
was compressed into the 64-bit storage area. In addition to the end bit (Bit 63), any unused
bits are thus only padding, and the value of the padding depends on the result of the various Pr
el
im

in
ar

y

165 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

masking effects. For this compression algorithm, at most 21 values exist in the 64-bit
compressed storage value, and the process will begin again at Offset 0 with the next

compressedStorage value.

A (1 bit): The padding.

2.7.1.4 XMRENoSplitCompressionInfo<4>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMRENoSplitCompressionInfo<4>, as specified in
section 2.5.2.26.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed

MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see

section 2.2.2.3.2.

To simply this explanation, the process is divided into three phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.26). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the
resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 4.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the compressed storage, compressedStorage, is combined through a bitwise AND

operation with a masking value, resulting in a masked off compressedStorage that is named
maskedStorage. The masking value, named maskArrayValue, is found in the masking array named
maskArray, as specified in section 5. The index into this array to obtain the correct masking value is
calculated in the following manner: the bit count (in this case, 4) is multiplied by the storage data
size (64 bits), and then a bitwise OR operation is performed on the multiplication result and the

current offset into the storage area (startBit).

The following pseudocode illustrates this phase:

SET maskArrayValue = maskArray at index [((4) MULTIPLY (64)) BITWISE_OR (startBit)]

SET maskedStorage = (compressedStorage) BITWISE_AND (maskArrayValue)

In Phase 3, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the masked and compressed storage (maskedStorage).

This operation generates the final result, named maskedStorageWithValue.

The following pseudocode illustrates this phase:

SET maskedStorageWithValue = (maskedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the Pr

el
im

in
ar

y

166 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,

because that specific ordering is required.

Decompression does not require the use of the mask. One way to decompress a value that has been

compressed with this compression method is to right bit shift the masked storage containing the
value by the current offset into the storage, perform a bitwise AND operation on the result of the
value 0xFFFFFFFFFFFFFFFF right bit shifted by 60, and then add Min.

Using the same definitions as earlier, the following pseudocode illustrates one way to decompress
and retrieve the original compressed value from the storage:

SET idVal = Min + ((maskedStorageWithValue RIGHT_BITSHIFT startBit) BITWISE_AND
(0xFFFFFFFFFFFFFFFF RIGHT_BITSHIFT 60))

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

...

values (8 bytes): The set of values, each occupying 4 bits, in sequence and ordered low to
high. In the sequence, the first value occupies Bits 0 through 3, the second value occupies
Bits 4 through 7, and so on.

The startBit offset followed the sequence of Bit 0, 4, 8, and so on, up to Bit 60 as the data
was compressed into the 64-bit storage area. Any unused bits are thus only padding, and the

value of the padding depends on the result of the various masking effects. For this
compression algorithm, at most 16 values exist in the 64-bit compressed storage value, and
the process will begin again at Offset 0 with the next compressedStorage value.

2.7.1.5 XMRENoSplitCompressionInfo<5>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMRENoSplitCompressionInfo<5>, as specified in

section 2.5.2.27.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage being written to) is 64 bits in size. For more
details about the actual values that are compressed by using this type of compression, see section

2.2.2.3.2.

To simply this explanation, the process is divided into three phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.27). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the Pr

el
im

in
ar

y

167 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 5.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the compressed storage, compressedStorage, is combined through a bitwise AND
operation with a masking value, resulting in a masked off compressedStorage that is named
maskedStorage. The masking value, named maskArrayValue, is found in the masking array named
maskArray, as specified in section 5. The index into this array to obtain the correct masking value is
calculated in the following manner: the bit count (in this case, 5) is multiplied by the storage data
size (64 bits), and then a bitwise OR operation is performed on the multiplication result and the
current offset into the storage area (startBit).

The following pseudocode illustrates this phase:

SET maskArrayValue = maskArray at index [((5) MULTIPLY (64)) BITWISE_OR (startBit)]

SET maskedStorage = (compressedStorage) BITWISE_AND (maskArrayValue)

In Phase 3, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the masked and compressed storage (maskedStorage).
This operation generates the final result, named maskedStorageWithValue.

The following pseudocode illustrates this phase:

SET maskedStorageWithValue = (maskedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the
second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

Decompression does not require the use of the mask. One way to decompress a value that has been
compressed with this compression method is to right bit shift the masked storage containing the
value by the current offset into the storage, perform a bitwise AND operation on the result of the
value 0xFFFFFFFFFFFFFFFF right bit shifted by 59, and then add Min.

Using the same definitions as earlier, the following pseudocode illustrates one way to decompress
and retrieve the original compressed value from the storage:

SET idVal = Min + ((maskedStorageWithValue RIGHT_BITSHIFT startBit) BITWISE_AND

(0xFFFFFFFFFFFFFFFF RIGHT_BITSHIFT 59))

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

... A Pr
el
im

in
ar

y

168 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

values (60 bits): The set of values, each occupying 5 bits, in sequence and ordered low to high.
In the sequence, the first value occupies Bits 0 through 4, the second value occupies Bits 5

through 9, and so on.

The startBit offset followed the sequence of Bit 0, 5, 10, and so on, up to Bit 55 as the data

was compressed into the 64-bit storage area. In addition to the end bits (Bit 60 through 63),
any unused bits are thus only padding, and the value of the padding depends on the result of
the various masking effects. For this compression algorithm, at most 12 values exist in the
64-bit compressed storage value, and the process will begin again at Offset 0 with the next
compressedStorage value

A (4 bits): The padding.

2.7.1.6 XMRENoSplitCompressionInfo<6>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMRENoSplitCompressionInfo<6>, as specified in
section 2.5.2.28.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed

MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage being written to) is 64 bits in size. For more
details about the actual values that are compressed by using this type of compression, see section
2.2.2.3.2.

To simply this explanation, the process is divided into three phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of

Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.28). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the
resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a

multiple of 6.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the compressed storage, compressedStorage, is combined through a bitwise AND
operation with a masking value, resulting in a masked off compressedStorage that is named
maskedStorage. The masking value, named maskArrayValue, is found in the masking array named
maskArray, as specified in section 5. The index into this array to obtain the correct masking value is
calculated in the following manner: the bit count (in this case, 6) is multiplied by the storage data
size (64 bits), and then a bitwise OR operation is performed on the multiplication result and the

current offset into the storage area (startBit).

The following pseudocode illustrates this phase:

SET maskArrayValue = maskArray at index [((6) MULTIPLY (64)) BITWISE_OR (startBit)]

SET maskedStorage = (compressedStorage) BITWISE_AND (maskArrayValue)

In Phase 3, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the masked and compressed storage (maskedStorage).
This operation generates the final result, named maskedStorageWithValue. Pr

el
im

in
ar

y

169 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The following pseudocode illustrates this phase:

SET maskedStorageWithValue = (maskedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the

second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

Decompression does not require the use of the mask. One way to decompress a value that has been
compressed with this compression method is to right bit shift the masked storage containing the
value by the current offset into the storage, perform a bitwise AND operation on the result of the
value 0xFFFFFFFFFFFFFFFF right bit shifted by 58, and then add Min.

Using the same definitions as earlier, the following pseudocode illustrates one way to decompress
and retrieve the original compressed value from the storage:

SET idVal = Min + ((maskedStorageWithValue RIGHT_BITSHIFT startBit) BITWISE_AND

(0xFFFFFFFFFFFFFFFF RIGHT_BITSHIFT 58))

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

... A

values (60 bits): The set of values, each occupying 6 bits, in sequence and ordered low to high.

In the sequence, the first value occupies Bits 0 through 5, the second value occupies Bits 6
through 11, and so on.

The startBit offset followed the sequence of Bit 0, 6, 12, and so on, up to Bit 54 as the data
was compressed into the 64-bit storage area. In addition to the end bits (Bit 60 through 63),
any unused bits are thus only padding, and the value of the padding depends on the result of
the various masking effects. For this compression algorithm, at most 10 values exist in the
64-bit compressed storage value, and the process will begin again at Offset 0 with the next

compressedStorage value

A (4 bits): The padding.

2.7.1.7 XMRENoSplitCompressionInfo<7>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMRENoSplitCompressionInfo<7>, as specified in
section 2.5.2.29.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage being written to) is 64 bits in size. For more Pr

el
im

in
ar

y

170 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

details about the actual values that are compressed by using this type of compression, see section
2.2.2.3.2.

To simply this explanation, the process is divided into three phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of

Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.29). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the
resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 7.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the compressed storage, compressedStorage, is combined through a bitwise AND
operation with a masking value, resulting in a masked off compressedStorage that is named
maskedStorage. The masking value, named maskArrayValue, is found in the masking array named

maskArray, as specified in section 5. The index into this array to obtain the correct masking value is
calculated in the following manner: the bit count (in this case, 7) is multiplied by the storage data
size (64 bits), and then a bitwise OR operation is performed on the multiplication result and the

current offset into the storage area (startBit).

The following pseudocode illustrates this phase:

SET maskArrayValue = maskArray at index [((7) MULTIPLY (64)) BITWISE_OR (startBit)]

SET maskedStorage = (compressedStorage) BITWISE_AND (maskArrayValue)

In Phase 3, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the masked and compressed storage (maskedStorage).
This operation generates the final result, named maskedStorageWithValue.

The following pseudocode illustrates this phase:

SET maskedStorageWithValue = (maskedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the
second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

Decompression does not require the use of the mask. One way to decompress a value that has been
compressed with this compression method is to right bit shift the masked storage containing the
value by the current offset into the storage, perform a bitwise AND operation on the result of the
value 0xFFFFFFFFFFFFFFFF right bit shifted by 57, and then add Min.

Using the same definitions as earlier, the following pseudocode illustrates one way to decompress
and retrieve the original compressed value from the storage:

SET idVal = Min + ((maskedStorageWithValue RIGHT_BITSHIFT startBit) BITWISE_AND
(0xFFFFFFFFFFFFFFFF RIGHT_BITSHIFT 57))

The following diagram shows the compressed data values. Pr
el
im

in
ar

y

171 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

... A

values (63 bits): The set of values, each occupying 7 bits, in sequence and ordered low to high.
In the sequence, the first value occupies Bits 0 through 6, the second value occupies Bits 7
through 13, and so on.

The startBit offset followed the sequence of Bit 0, 7, 14, and so on, up to Bit 56 as the data

was compressed into the 64-bit storage area. In addition to the end bit (Bit 63), any unused
bits are thus only padding, and the value of the padding depends on the result of the various
masking effects. For this compression algorithm, at most nine values exist in the 64-bit
compressed storage value, and the process will begin again at Offset 0 with the next

compressedStorage value.

A (1 bit): The padding.

2.7.1.8 XMRENoSplitCompressionInfo<8>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMRENoSplitCompressionInfo<8>, as specified in
section 2.5.2.30.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed

MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage being written to) is 64 bits in size. For more
details about the actual values that are compressed by using this type of compression, see section

2.2.2.3.2.

The minimum value (Min) is subtracted from the value to be compressed. The value of Min can be
found in the XML metadata file that is associated with the data file containing the compressed data

(see section 2.5.2.30). The result of this subtraction (idVal - Min) is then copied into the storage at
that particular bit offset. The offset is a multiple of 8.

The following pseudocode illustrates this process:

SET compressedStorage at offset = (idVal - Min) WHERE offset is multiple of 8

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the
second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.

It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

Decompressing values from this method consists of a simple reversal of the compression process.

The following diagram shows the compressed data values. Pr
el
im

in
ar

y

172 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

...

values (8 bytes): The set of values, each occupying 1 byte, in sequence and ordered low to
high. In the sequence, the first value occupies Bits 0 through 7, the second value occupies
Bits 8 through 15, and so on.

The startBit offset followed the sequence of Bit 0, 8, 16, and so on, up to Bit 56 as the data

was compressed into the 64-bit storage area. For this compression algorithm, at most eight
values exist in the 64-bit compressed storage value, and the process will begin again at Offset
0 with the next compressedStorage value.

No padding exists in the compressed storage area because the number of necessary bits is a

multiple of 8. However, if the entire storage area is not used, the remaining storage area is
set to zero. For example, if only three values are placed into the compressed storage area, all
the remaining bits, from Bit 24 through 63, will be zero.

2.7.1.9 XMRENoSplitCompressionInfo<9>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMRENoSplitCompressionInfo<9>, as specified in
section 2.5.2.31.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into

the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage being written to) is 64 bits in size. For more

details about the actual values that are compressed by using this type of compression, see section
2.2.2.3.2.

To simply this explanation, the process is divided into three phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.31). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the
resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 9.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the compressed storage, compressedStorage, is combined through a bitwise AND
operation with a masking value, resulting in a masked off compressedStorage that is named
maskedStorage. The masking value, named maskArrayValue, is found in the masking array named
maskArray, as specified in section 5. The index into this array to obtain the correct masking value is
calculated in the following manner: the bit count (in this case, 9) is multiplied by the storage data Pr

el
im

in
ar

y

173 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

size (64 bits), and then a bitwise OR operation is performed on the multiplication result and the
current offset into the storage area (startBit).

The following pseudocode illustrates this phase:

SET maskArrayValue = maskArray at index [((9) MULTIPLY (64)) BITWISE_OR (startBit)]

SET maskedStorage = (compressedStorage) BITWISE_AND (maskArrayValue)

In Phase 3, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the masked and compressed storage (maskedStorage).
This operation generates the final result, named maskedStorageWithValue.

The following pseudocode illustrates this phase:

SET maskedStorageWithValue = (maskedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,

however, individual values are placed low to high, with the first value occupying the lowest bits, the

second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

Decompression does not require the use of the mask. One way to decompress a value that has been
compressed with this compression method is to right bit shift the masked storage containing the

value by the current offset into the storage, perform a bitwise AND operation on the result of the
value 0xFFFFFFFFFFFFFFFF right bit shifted by 55, and then add Min.

Using the same definitions as earlier, the following pseudocode illustrates one way to decompress
and retrieve the original compressed value from the storage:

SET idVal = Min + ((maskedStorageWithValue RIGHT_BITSHIFT startBit) BITWISE_AND
(0xFFFFFFFFFFFFFFFF RIGHT_BITSHIFT 55))

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

... A

values (63 bits): The set of values, each occupying 9 bits, in sequence and ordered low to high.
In the sequence, the first value occupies Bits 0 through 8, the second value occupies Bits 9
through 17, and so on.

The startBit offset followed the sequence of Bit 0, 3, 6, and so on, up to Bit 54 as the data
was compressed into the 64-bit storage area. In addition to the end bit (Bit 63), any unused

bits, are thus only padding, and the value of the padding depends on the result of the various
masking effects. For this compression algorithm, at most seven values exist in the 64-bit

compressed storage value, and the process will begin again at Offset 0 with the next
compressedStorage value.

A (1 bit): The padding. Pr
el
im

in
ar

y

174 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.7.1.10 XMRENoSplitCompressionInfo<10>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMRENoSplitCompressionInfo<10>, as specified in

section 2.5.2.32.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see

section 2.2.2.3.2.

To simply this explanation, the process is divided into three phases

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the

compressed data (see section 2.5.2.32). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the

resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 10.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the compressed storage, compressedStorage, is combined through a bitwise AND
operation with a masking value, resulting in a masked off compressedStorage that is named
maskedStorage. The masking value, named maskArrayValue, is found in the masking array named

maskArray, as specified in section 5. The index into this array to obtain the correct masking value is
calculated in the following manner: the bit count (in this case, 10) is multiplied by the storage data
size (64 bits), and then a bitwise OR operation is performed on the multiplication result and the
current offset into the storage area (startBit).

The following pseudocode illustrates this phase:

SET maskArrayValue = maskArray at index [((10) MULTIPLY (64)) BITWISE_OR (startBit)]

SET maskedStorage = (compressedStorage) BITWISE_AND (maskArrayValue)

In Phase 3, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the masked and compressed storage (maskedStorage).
This operation generates the final result, named maskedStorageWithValue.

The following pseudocode illustrates this phase:

SET maskedStorageWithValue = (maskedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,

however, individual values are placed low to high, with the first value occupying the lowest bits, the

second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

Decompression does not require the use of the mask. One way to decompress a value that has been
compressed with this compression method is to right bit shift the masked storage containing the Pr

el
im

in
ar

y

175 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

value by the current offset into the storage, perform a bitwise AND operation on the result of the
value 0xFFFFFFFFFFFFFFFF right bit shifted by 54, and then add Min.

Using the same definitions as earlier, the following pseudocode illustrates one way to decompress
and retrieve the original compressed value from the storage:

SET idVal = Min + ((maskedStorageWithValue RIGHT_BITSHIFT startBit) BITWISE_AND
(0xFFFFFFFFFFFFFFFF RIGHT_BITSHIFT 54))

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

... A

values (60 bits): The set of values, each occupying 10 bits, in sequence and ordered low to
high. In the sequence, the first value occupies Bits 0 through 9, the second value occupies
Bits 10 through 19, and so on.

The startBit offset followed the sequence of Bit 0, 10, 20, and so on, up to Bit 50 as the data

was compressed into the 64-bit storage area. In addition to the end bits (Bit 60 through 63),
any unused bits are thus only padding, and the value of the padding depends on the result of
the various masking effects. For this compression algorithm, at most six values exist in the
64-bit compressed storage value, and the process will begin again at Offset 0 with the next
compressedStorage value

A (4 bits): The padding.

2.7.1.11 XMRENoSplitCompressionInfo<12>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMRENoSplitCompressionInfo<12>, as specified in
section 2.5.2.33.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed

MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see
section 2.2.2.3.2.

To simply this explanation, the process is divided into three phases

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of

Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.33). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the
resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 12.

The following pseudocode illustrates this phase: Pr
el
im

in
ar

y

176 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the compressed storage, compressedStorage, is combined through a bitwise AND

operation with a masking value, resulting in a masked off compressedStorage that is named
maskedStorage. The masking value, named maskArrayValue, is found in the masking array named

maskArray, as specified in section 5. The index into this array to obtain the correct masking value is
calculated in the following manner: the bit count (in this case, 12) is multiplied by the storage data
size (64 bits), and then a bitwise OR operation is performed on the multiplication result and the
current offset into the storage area (startBit).

The following pseudocode illustrates this phase:

SET maskArrayValue = maskArray at index [((12) MULTIPLY (64)) BITWISE_OR (startBit)]

SET maskedStorage = (compressedStorage) BITWISE_AND (maskArrayValue)

In Phase 3, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the masked and compressed storage (maskedStorage).
This operation generates the final result, named maskedStorageWithValue.

The following pseudocode illustrates this phase:

SET maskedStorageWithValue = (maskedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,

however, individual values are placed low to high, with the first value occupying the lowest bits, the
second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

Decompression does not require the use of the mask. One way to decompress a value that has been
compressed with this compression method is to right bit shift the masked storage containing the
value by the current offset into the storage, perform a bitwise AND operation on the result of the

value 0xFFFFFFFFFFFFFFFF right bit shifted by 52, and then add Min.

Using the same definitions as earlier, the following pseudocode illustrates one way to decompress
and retrieve the original compressed value from the storage:

SET idVal = Min + ((maskedStorageWithValue RIGHT_BITSHIFT startBit) BITWISE_AND
(0xFFFFFFFFFFFFFFFF RIGHT_BITSHIFT 52))

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

... A

values (60 bits): The set of values, each occupying 12 bits, in sequence and ordered low to

high. In the sequence, the first value occupies Bits 0 through 11, the second value occupies
Bits 12 through 23, and so on.

The startBit offset followed the sequence of Bit 0, 12, 24, and so on, up to Bit 48 as the data
was compressed into the 64-bit storage area. In addition to the end bits (Bit 60 through 63), Pr
el
im

in
ar

y

177 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

any unused bits are thus only padding, and the value of the padding depends on the result of
the various masking effects. For this compression algorithm, at most five values exist in the

64-bit compressed storage value, and the process will begin again at Offset 0 with the next
compressedStorage value

A (4 bits): The padding.

2.7.1.12 XMRENoSplitCompressionInfo<16>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMRENoSplitCompressionInfo<16>, as specified in
section 2.5.2.34.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into

the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For

more details about the actual values that are compressed by using this type of compression, see
section 2.2.2.3.2.

The minimum value (Min) is subtracted from the value to be compressed. The value of Min can be
found in the XML metadata file that is associated with the data file containing the compressed data
(see section 2.5.2.34). The result of this subtraction (idVal - Min) is then copied into the storage at
that particular bit offset. The offset is a multiple of 16.

The following pseudocode illustrates this process:

SET compressedStorage at offset = (idVal - Min) WHERE offset is multiple of 16

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,

however, individual values are placed low to high, with the first value occupying the lowest bits, the
second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,

because that specific ordering is required.

Decompressing values from this method consists of a simple reversal of the compression process.

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

value1 value2

value3 value4

value1 (2 bytes): The first value in the sequence.

value2 (2 bytes): The second value in the sequence.

value3 (2 bytes): The third value in the sequence.

value4 (2 bytes): The fourth value in the sequence. Pr
el
im

in
ar

y

178 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

In the sequence, value1 occupies Bits 0 through 15, value2 occupies Bits 16 through 31,
and so on. The startBit offset followed the sequence of Bit 0, 8, 16, and so on, up to Bit 56 as

the data was compressed into the 64-bit storage area. For this compression algorithm, at
most four values exist in the 64-bit compressed storage value, and the process will begin

again at Offset 0 with the next compressedStorage value. No padding exists in the
compressed storage area because the number of necessary bits is a multiple of 16. However,
if the entire storage area is not used, the remaining storage area is set to zero. For example,
if only three values are placed into the compressed storage area, all the remaining bits, from
Bit 48 through 63, will be zero.

2.7.1.13 XMRENoSplitCompressionInfo<21>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMRENoSplitCompressionInfo<21>, as specified in
section 2.5.2.35.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed

MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named

compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage being written to) is 64 bits in size. For more
details about the actual values that are compressed by using this type of compression, see section
2.2.2.3.2.

To simply this explanation, the process is divided into three phases

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the

compressed data (see section 2.5.2.35). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the
resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 21.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the compressed storage, compressedStorage, is combined through a bitwise AND

operation with a masking value, resulting in a masked off compressedStorage that is named
maskedStorage. The masking value, named maskArrayValue, is found in the masking array named
maskArray, as specified in section 5. The index into this array to obtain the correct masking value is
calculated in the following manner: the bit count (in this case, 21) is multiplied by the storage data
size (64 bits), and then a bitwise OR operation is performed on the multiplication result and the
current offset into the storage area (startBit).

The following pseudocode illustrates this phase:

SET maskArrayValue = maskArray at index [((21) MULTIPLY (64)) BITWISE_OR (startBit)]

SET maskedStorage = (compressedStorage) BITWISE_AND (maskArrayValue)

In Phase 3, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the masked and compressed storage (maskedStorage).
This operation generates the final result, named maskedStorageWithValue.

The following pseudocode illustrates this phase: Pr
el
im

in
ar

y

179 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

SET maskedStorageWithValue = (maskedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,

however, individual values are placed low to high, with the first value occupying the lowest bits, the
second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.

It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

Decompression does not require the use of the mask. One way to decompress a value that has been
compressed with this compression method is to right bit shift the masked storage containing the
value by the current offset into the storage, perform a bitwise AND operation on the result of the
value 0xFFFFFFFFFFFFFFFF right bit shifted by 43, and then add Min.

Using the same definitions as earlier, the following pseudocode illustrates one way to decompress

and retrieve the original compressed value from the storage:

SET idVal = Min + ((maskedStorageWithValue RIGHT_BITSHIFT startBit) BITWISE_AND
(0xFFFFFFFFFFFFFFFF RIGHT_BITSHIFT 43))

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

value1 value2

... value3 A

value1 (21 bits): The first value in the sequence.

value2 (21 bits): The second value in the sequence.

value3 (21 bits): The third value in the sequence.

In the sequence, value1 occupies Bits 0 through 20, value2 occupies Bits 21 through 41,
and so on. The startBit offset followed the sequence of Bit 0, 21, and 42 as the data was
compressed into the 64-bit storage area. For this compression algorithm, at most three values
exist in the 64-bit compressed storage value, and the process will begin again at Offset 0 with
the next compressedStorage value. In addition to the end bit (Bit 63), any unused bits are
thus only padding, and the value of the padding depends on the result of the various masking

effects.

A (1 bit): The padding.

2.7.1.14 XMRENoSplitCompressionInfo<32>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMRENoSplitCompressionInfo<32>, as specified in
section 2.5.2.36.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For Pr

el
im

in
ar

y

180 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

more details about the actual values that are compressed by using this type of compression, see
section 2.2.2.3.2.

The minimum value (Min) is subtracted from the value to be compressed. The value of Min can be
found in the XML metadata file that is associated with the data file containing the compressed data

(see section 2.5.2.36). The result of this subtraction (idVal - Min) is then copied into the storage at
the particular bit offset. The offset is a multiple of 32.

The following pseudocode illustrates this process:

SET compressedStorage at offset = (idVal - Min) WHERE offset is multiple of 32

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the
second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.

It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

Decompressing values from this method consists of a simple reversal of the compression process.

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

value1

value2

value1 (4 bytes): The first value in the sequence.

value2 (4 bytes): The second value in the sequence.

In the sequence, value1 occupies Bits 0 through 31, and value2 occupies Bits 32 through
63. The startBit offset followed the sequence of Bit 0 and then Bit 32 as the data was
compressed into the 64-bit storage area. For this compression algorithm, at most two values
exist in the 64-bit compressed storage value, and the process will begin again at Offset 0 with
the next compressedStorage value. No padding exists in the compressed storage area
because the number of necessary bits is a multiple of 32. However, if the entire storage area
is not used, the remaining storage area is set to zero. For example, if only one value is placed

into the compressed storage area, all the remaining bits, from Bit 32 through Bit 63, will be
zero.

2.7.2 XM123 Compression Algorithm

XM123 compression is used only in the special situation where the internally generated
RowNumber column (section 2.3.4) is serialized to disk. This column follows the same file format
as any column data storage file (section 2.3.1).

The storage area for the compressed value MUST be zeroed out prior to compressing the value and
storing it in that area.

Pr
el
im

in
ar

y

181 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.7.2.1 XM123CompressionInfo

This compression is never used standalone, even though it could be referenced in the XML metadata
in what might appear at first look to be a standalone manner within the XML metadata, see section

2.5.2.37. It is always used as part of an XMHybridRLE compression and only for a particular special
case. Please see section 2.7.3.16.

2.7.3 XMHybridRLE Compression Algorithms

XMHybridRLE compression algorithms use two forms of compression in combination: run length
encoding (RLE) and bit packing. As a result, these compression algorithms use two segments to
represent all the values. The segments are referred to here as the RLE segment, or primary

segment, and the subsegment, or bit-packing subsegment. The RLE segment contains a possible
mix of RLE entries and bit-packing entries, the latter of which refer to bit-packed values that follow
in the subsegment.

The first type of compression that is used in this hybrid compression is RLE. RLE is used only on
appropriate data items—those that repeat often enough to make RLE an efficient compression

choice. In RLE compression, two 4-byte values are used that together comprise the first type of

entry in the RLE segment—the RLE entry. The first value of the RLE entry is the data value. The
second value is the repeat count, which is the number of times that the data value repeats in a
continuous sequence. The repeat count MUST be equal to or greater than 64. For an RLE run to be
generated by the system, at least 64 consecutive items (that is, 64 identical records) MUST exist in
that run of data. Otherwise, the individual items will be bit packed by using the chosen bit-packing
algorithm in the related subsegment.

The second type of entry in the RLE segment is the bit-packing entry. The bit-packing entry also

contains two 4-byte values. The first value is a negated 1-based offset into the subsegment data,
and the second value is the count of the number of values that follow in the subsegment. The offset
value is represented as the negative of itself to clearly distinguish it from the RLE entries. The bit-
packed values exist in a separate bit-packing subsegment that follows the RLE segment.

The first bit-packing entry uses –1 as the first value (to indicate that it is the first data value in the
subsegment) and then has the count of bit-packing items as the second value. Any subsequent bit-

packing entries also have a negative offset value as the first value. This negative offset value is

calculated by taking the previous negative bit-packing entry offset value, and subtracting from it the
bit-packing entry count of that same entry.

Any number of RLE entries and bit-packing entries can exist in the RLE segment, and in any order.
It is also possible for the RLE segment to have no RLE entries or no bit-packing entries in the RLE
segment. In very rare cases, it is possible for both the segment and subsegment to be empty. For
more information about segment minimum and maximum row sizes, see section 2.3.1.1.3.

The bit-packed compression values follow the RLE segment. The bit-packed values are in the same
order that they are referred to here but within their own, bit-packed subsegment. All the bit-packed
values that are referenced (as bit-packing entries) within the RLE segment use the same type of bit-
packing compression because only one type of bit-packing compression is allowed per segment. In
other words, after the RLE segment, the bit-packing subsegment that is associated with the RLE
segment uses a single bit-packing algorithm, such as that for

XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<3>> in which each bit-

packed entry is compressed by using 3 bits. For more information about the column data storage file
format, see section 2.3.1.

For a diagrammed example of RLE entries mixed with bit-packing entries, see section 2.7.3.1. Pr
el
im

in
ar

y

182 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

After the end of all the data entries (both the RLE entries and the bit-packing entries) in the RLE
segment, any remaining storage area allocated for the RLE segment is zeroed out. The size of this

padding depends on the amount of storage allocated and the amount used. These amounts can be
found in the metadata information for this compression (see section 2.5.2.38.1).

Following the end of this segment (including any padding at the end of the segment), the next
segment begins. This segment is called the subsegment of the XMHybridRLE compression and
contains the selected bit-packing compression sequence. For more information about the column
data storage file format, which is the file format that uses this hybrid compression dual segment
layout, see section 2.3.1.

The second part of the hybrid compression, the subsegment, involves using a bit-packing
compression algorithm. This part is used for data items that are not suitable for RLE compression,

and it uses a form of range encoding bit-packing compression in which the data to be stored (after
that data has been offset by a minimum value) is compacted into a specified number of bits. The bit
size that is chosen determines the bit-packing algorithm that is used to compress the data. The
values that are bit packed in this segment conform to the sequence that is specified in the RLE
segment.

Despite any name similarity, the range encoding bit-packing algorithm that is used in the hybrid

compression is not necessarily the same as the range encoding bit-packing algorithm that is used in
the nonhybrid case.

The storage area for the compressed value, whether RLE or bit packed, MUST be zeroed out prior to
compressing the value and storing it in that area.

2.7.3.1 Conceptual Overview of RLE Entries and Bit-Packing Entries

The following bit diagram shows a sequence of RLE entries and bit-packing entries as described in

section 2.7.3. This conceptual overview is long to clearly show the pattern of negative offset values
used in the bit-packing entries. The sequence includes several RLE entries and an occasional bit-
packing entry.

As mentioned in section 2.7.3, any mix of RLE entries and bit-packing entries can exist. So in this

conceptual overview, the number of RLE entries and the number of bit-packing entries is arbitrary.
The count of values that is shown in each bit-packing entry can also be larger or smaller than that
shown in this example. The count of values that is shown for an RLE entry MUST be greater than or

equal to the required minimum of 64.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RLE_Entry_value

RLE_Entry_repeat_count

RLE_Entry_value

RLE_Entry_repeat_count

RLE_Entry_value

RLE_Entry_repeat_count Pr
el
im

in
ar

y

183 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Bit_Packing_Entry_offset

Bit_Packing_Entry_count

RLE_Entry_value

RLE_Entry_repeat_count

RLE_Entry_value

RLE_Entry_repeat_count

Bit_Packing_Entry_offset

Bit_Packing_Entry_count

RLE_Entry_value

RLE_Entry_repeat_count

Bit_Packing_Entry_offset

Bit_Packing_Entry_count

RLE_Entry_value

RLE_Entry_repeat_count

RLE_Entry_value

RLE_Entry_repeat_count

Bit_Packing_Entry_offset

Bit_Packing_Entry_count

padding (variable)

...

RLE_Entry_value (4 bytes): A value compressed with RLE.

RLE_Entry_repeat_count (4 bytes): The number of times that the preceding value appears
sequentially in this RLE run.

RLE_Entry_value (4 bytes): A value compressed with RLE. Pr
el
im

in
ar

y

184 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

RLE_Entry_repeat_count (4 bytes): The number of times that the preceding value appears
sequentially in this RLE run.

RLE_Entry_value (4 bytes): A value compressed with RLE.

RLE_Entry_repeat_count (4 bytes): The number of times that the preceding value appears

sequentially in this RLE run.

Bit_Packing_Entry_offset (4 bytes): The offset into the subsegment. This offset is –1. Note
that the first offset equals the first data value in the subsegment.

Bit_Packing_Entry_count (4 bytes): The number of values that will be using the subsegment
bit-packing algorithm. This count is 5.

RLE_Entry_value (4 bytes): A value compressed with RLE.

RLE_Entry_repeat_count (4 bytes): The number of times that the preceding value appears

sequentially in this RLE run.

RLE_Entry_value (4 bytes): A value compressed with RLE.

RLE_Entry_repeat_count (4 bytes): The number of times that the preceding value appears
sequentially in this RLE run.

Bit_Packing_Entry_offset (4 bytes): The offset into the subsegment. This offset is –6. Note
that –6 = –1 – 5 (the values from the previous bit-packing entry).

Bit_Packing_Entry_count (4 bytes): The number of values that will be using the subsegment
bit-packing algorithm. This count is 20.

RLE_Entry_value (4 bytes): A value compressed with RLE.

RLE_Entry_repeat_count (4 bytes): The number of times that the preceding value appears
sequentially in this RLE run.

Bit_Packing_Entry_offset (4 bytes): The offset into the subsegment. This offset is –26. Note
that –26 = –6 – 20 (the values from the previous bit-packing entry).

Bit_Packing_Entry_count (4 bytes): The number of values that will be using the subsegment
bit-packing algorithm. This count is 10.

RLE_Entry_value (4 bytes): A value compressed with RLE.

RLE_Entry_repeat_count (4 bytes): The number of times that the preceding value appears
sequentially in this RLE run.

RLE_Entry_value (4 bytes): A value compressed with RLE.

RLE_Entry_repeat_count (4 bytes): The number of times that the preceding value appears

sequentially in this RLE run.

Bit_Packing_Entry_offset (4 bytes): The offset into the subsegment. This offset is –36. Note

that –36 = –26 – 10 (the values from the previous bit-packing entry).

Bit_Packing_Entry_count (4 bytes): The number of values that will be using the subsegment
bit-packing algorithm. This count is 2. Pr
el
im

in
ar

y

185 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

padding (variable): The padding, which is unused but MUST be filled with zeros. The size, in
bytes, is a multiple of 4.

2.7.3.2 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<1>>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<1>>, as specified in section 2.5.2.39. The RLE portion of this
compression follows the format that is described in section 2.7.3. The bit packing sub-segment
portion of the compression is as follows.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed

MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see
section 2.2.2.3.2.

To simply this explanation, the process is divided into two phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.39). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the
resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 1.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the compressed storage (compressedStorage). This

operation generates the final result, named storageWithValue.

The following pseudocode illustrates this phase:

SET storageWithValue = (compressedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the
second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.

It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

The same decompression method that is used in XMRENoSplit compression can be used here. For
more information, see section 2.7.1.1.

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values Pr
el
im

in
ar

y

186 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

...

values (8 bytes): The set of values, each occupying 1 bit, in sequence and ordered low to high.
In the sequence, the first value occupies Bit 0, the second value occupies Bit 1, and so on.

The startBit offset followed the sequence of Bit 0, 1, 2, and so on, up to Bit 63 as the data
was compressed into the 64-bit storage area. Any unused bits are thus only padding, and the
value of the padding depends on the result of the various masking effects. For this
compression algorithm, at most 64 values exist in the 64-bit compressed storage value, and

the process will begin again at Offset 0 with the next compressedStorage value.

2.7.3.3 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<2>>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<2>>, as specified in section 2.5.2.40. The RLE portion of this
compression follows the format described in section 2.7.3. The bit-packing subsegment portion of

the compression is as follows.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see

section 2.2.2.3.2.

To simply this explanation, the process is divided into two phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.40). The result of this subtraction (idVal - Min) is then left bit

shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the

resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 2.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the compressed storage (compressedStorage). This
operation generates the final result, named storageWithValue.

SET storageWithValue = (compressedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the
second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.

It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

The same decompression method that is used in XMRENoSplit compression can be used here. For

more information, see section 2.7.1.2. Pr
el
im

in
ar

y

187 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

...

values (8 bytes): The set of values, each occupying 2 bits, in sequence and ordered low to
high. In the sequence, the first value occupies Bits 0 through 1, the second value occupies
Bits 2 through 3, and so on.

The startBit offset followed the sequence of Bit 0, 2, 4, and so on, up to Bit 62 as the data
was compressed into the 64-bit storage area. Any unused bits are thus only padding, and the
value of the padding depends on the result of the various masking effects. For this
compression algorithm, at most 32 values exist in the 64-bit compressed storage value, and

the process will begin again at Offset 0 with the next compressedStorage value.

2.7.3.4 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<3>>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<3>>, as specified in section 2.5.2.41. The RLE portion of this
compression follows the format described in section 2.7.3. The bit-packing subsegment portion of
the compression is as follows.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into

the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For

more details about the actual values that are compressed by using this type of compression, see
section 2.2.2.3.2.

To simply this explanation, the process is divided into two phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.41). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the
resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 3.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the compressed storage (compressedStorage). This
operation generates the final result, named storageWithValue.

The following pseudocode illustrates this phase:

SET storageWithValue = (compressedStorage) BITWISE_OR (shiftedVal) Pr
el
im

in
ar

y

188 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the

second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,

because that specific ordering is required.

The same decompression method that is used in XMRENoSplit compression can be used here. For
more information, see section 2.7.1.3.

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

... A

values (63 bits): The set of values, each occupying 3 bits, in sequence and ordered low to high.
In the sequence, the first value occupies Bits 0 through 2, the second value occupies Bits 3
through 5, and so on.

The startBit offset followed the sequence of Bit 0, 3, 6, and so on, up to Bit 60 as the data
was compressed into the 64-bit storage area. In addition to the end bit (Bit 63), any unused
bits are thus only padding, and the value of the padding depends on the result of the various
masking effects. For this compression algorithm, at most 21 values exist in the 64-bit
compressed storage value, and the process will begin again at Offset 0 with the next
compressedStorage value.

A (1 bit): The padding.

2.7.3.5 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<4>>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<4>>, as specified in section 2.5.2.42. The RLE portion of this
compression follows the format described in section 2.7.3. The bit-packing subsegment portion of

the compression is as follows.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see

section 2.2.2.3.2.

To simply this explanation, the process is divided into two phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.42). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the Pr

el
im

in
ar

y

189 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 4.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the compressed storage (compressedStorage). This
operation generates the final result, named storageWithValue.

The following pseudocode illustrates this phase:

SET storageWithValue = (compressedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the

second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,

because that specific ordering is required.

The same decompression method that is used in XMRENoSplit compression can be used here. For
more information, see section 2.7.1.4.

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

...

values (8 bytes): The set of values, each occupying 4 bits, in sequence and ordered low to
high. In the sequence, the first value occupies Bits 0 through 3, the second value occupies
Bits 4 through 7, and so on.

The startBit offset followed the sequence of Bit 0, 4, 8, and so on, up to Bit 60 as the data
was compressed into the 64-bit storage area. Any unused bits are thus only padding, and the
value of the padding depends on the result of the various masking effects. For this
compression algorithm, at most 16 values exist in the 64-bit compressed storage value, and

the process will begin again at Offset 0 with the next compressedStorage value.

2.7.3.6 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<5>>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<5>>, as specified in section 2.5.2.43. The RLE portion of this
compression follows the format described in section 2.7.3. The bit-packing subsegment portion of

the compression is as follows.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each Pr

el
im

in
ar

y

190 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see

section 2.2.2.3.2.

To simply this explanation, the process is divided into two phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.43). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the
resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 5.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the compressed storage (compressedStorage). This

operation generates the final result, named storageWithValue.

The following pseudocode illustrates this phase:

SET storageWithValue = (compressedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the
second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

The same decompression method that is used in XMRENoSplit compression can be used here. For
more information, see section 2.7.1.5.

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

... A

values (60 bits): The set of values, each occupying 5 bits, in sequence and ordered low to high.
In the sequence, the first value occupies Bits 0 through 4, the second value occupies Bits 5
through 9, and so on.

The startBit offset followed the sequence of Bit 0, 5, 10, and so on, up to Bit 55 as the data
was compressed into the 64-bit storage area. In addition to the end bits (Bits 60 through 63),

any unused bits are thus only padding, and the value of the padding depends on the result of

the various masking effects. For this compression algorithm, at most 12 values exist in the
64-bit compressed storage value, and the process will begin again at Offset 0 with the next
compressedStorage value.

A (4 bits): The padding. Pr
el
im

in
ar

y

191 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

2.7.3.7 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<6>>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<6>>, as specified in section 2.5.2.44. The RLE portion of this
compression follows the format described in section 2.7.3. The bit-packing subsegment portion of
the compression is as follows.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each

compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see
section 2.2.2.3.2.

To simply this explanation, the process is divided into two phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the

compressed data (see section 2.5.2.44). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the
resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 6.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the data value is placed into the compressed storage. A bitwise OR operation is

performed on the value (shiftedVal) and the compressed storage (compressedStorage). This
operation generates the final result, named storageWithValue.

The following pseudocode illustrates this phase:

SET storageWithValue = (compressedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the
second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.

It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

The same decompression method that is used in XMRENoSplit compression can be used here. For
more information, see section 2.7.1.6.

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

... A Pr
el
im

in
ar

y

192 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

values (60 bits): The set of values, each occupying 6 bits, in sequence and ordered low to high.
In the sequence, the first value occupies Bits 0 through 5, the second value occupies Bits 6

through 11, and so on.

The startBit offset followed the sequence of Bit 0, 6, 12, and so on, up to Bit 54 as the data

was compressed into the 64-bit storage area. In addition to the end bits (Bits 60 through 63),
any unused bits are thus only padding, and the value of the padding depends on the result of
the various masking effects. For this compression algorithm, at most 10 values exist in the
64-bit compressed storage value, and the process will begin again at Offset 0 with the next
compressedStorage value.

A (4 bits): The padding.

2.7.3.8 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<7>>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<7>>, as specified in section 2.5.2.45. The RLE portion of this

compression follows the format described in section 2.7.3. The bit-packing subsegment portion of
the compression is as follows.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see
section 2.2.2.3.2.

To simply this explanation, the process is divided into two phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.45). The result of this subtraction (idVal - Min) is then left bit

shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the
resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 7.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the compressed storage (compressedStorage). This
operation generates the final result, named storageWithValue.

The following pseudocode illustrates this phase:

SET storageWithValue = (compressedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the
second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required. Pr

el
im

in
ar

y

193 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The same decompression method that is used in XMRENoSplit compression can be used here. For
more information, see section 2.7.1.7.

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

... A

values (63 bits): The set of values, each occupying 7 bits, in sequence and ordered low to high.

In the sequence, the first value occupies Bits 0 through 6, the second value occupies Bits 7
through 13, and so on.

The startBit offset followed the sequence of Bit 0, 7, 14, and so on, up to Bit 56 as the data

was compressed into the 64-bit storage area. In addition to the end bit (Bit 63), any unused
bits are thus only padding, and the value of the padding depends on the result of the various
masking effects. For this compression algorithm, at most 9 values exist in the 64-bit
compressed storage value, and the process will begin again at Offset 0 with the next

compressedStorage value.

A (1 bit): The padding.

2.7.3.9 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<8>>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<8>>, as specified in section 2.5.2.46. The RLE portion of this
compression follows the format described in section 2.7.3. The bit-packing subsegment portion of
the compression is identical to the 8-bit compression format that is used in XMRENoSplit

compression, as specified in section 2.7.1.8. For metadata information, see section 2.5.2.46.

2.7.3.10 XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<9>>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<9>>, as specified in section 2.5.2.47. The RLE portion of this
compression follows the format described in section 2.7.3. The bit-packing subsegment portion of
the compression is as follows.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into

the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each

compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see
section 2.2.2.3.2.

To simply this explanation, the process is divided into two phases. Pr
el
im

in
ar

y

194 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the

compressed data (see section 2.5.2.47). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the

resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 9.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the compressed storage (compressedStorage). This
operation generates the final result, named storageWithValue.

The following pseudocode illustrates this phase:

SET storageWithValue = (compressedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the
second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,

because that specific ordering is required.

The same decompression method that is used in XMRENoSplit compression can be used here. For
more information, see section 2.7.1.9.

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

... A

values (63 bits): The set of values, each occupying 9 bits, in sequence and ordered low to high.
In the sequence, the first value occupies Bits 0 through 8, the second value occupies Bits 9
through 17, and so on.

The startBit offset followed the sequence of Bit 0, 9, 18, and so on, up to Bit 54 as the data
was compressed into the 64-bit storage area. In addition to the end bit (Bit 63), any unused
bits are thus only padding, and the value of the padding depends on the result of the various
masking effects. For this compression algorithm, at most 7 values exist in the 64-bit
compressed storage value, and the process will begin again at Offset 0 with the next
compressedStorage value.

A (1 bit): The padding.

2.7.3.11 XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<10>>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class Pr

el
im

in
ar

y

195 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

XMRENoSplitCompressionInfo<10>>, as specified in section 2.5.2.48. The RLE portion of this
compression follows the format described in section 2.7.3. The bit-packing subsegment portion of

the compression is as follows.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into

the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see
section 2.2.2.3.2.

To simply this explanation, the process is divided into two phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.48). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the

resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 10.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the compressed storage (compressedStorage). This
operation generates the final result, named storageWithValue.

The following pseudocode illustrates this phase:

SET storageWithValue = (compressedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the

second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

The same decompression method that is used in XMRENoSplit compression can be used here. For
more information, see section 2.7.1.10.

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

... A

values (60 bits): The set of values, each occupying 10 bits, in sequence and ordered low to
high. In the sequence, the first value occupies Bits 0 through 9, the second value occupies
Bits 10 through 19, and so on. Pr
el
im

in
ar

y

196 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The startBit offset followed the sequence of Bit 0, 10, 20, and so on, up to Bit 50 as the data
was compressed into the 64-bit storage area. In addition to the end bits (Bits 60 through 63),

any unused bits are thus only padding, and the value of the padding depends on the result of
the various masking effects. For this compression algorithm, at most 6 values exist in the 64-

bit compressed storage value, and the process will begin again at Offset 0 with the next
compressedStorage value.

A (4 bits): The padding.

2.7.3.12 XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<12>>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<12>>, as specified in section 2.5.2.49. The RLE portion of this
compression follows the format described in section 2.7.3. The bit-packing subsegment portion of
the compression is as follows.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into

the compressed storage in the following manner: The maximum size of the value to be compressed
MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see
section 2.2.2.3.2.

To simply this explanation, the process is divided into two phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of
Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.49). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the
resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 12.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the compressed storage (compressedStorage). This
operation generates the final result, named storageWithValue.

The following pseudocode illustrates this phase:

SET storageWithValue = (compressedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the
second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.

It is only the way individual values are ordered within the file that is being emphasized here,
because that specific ordering is required.

The same decompression method that is used in XMRENoSplit compression can be used here. For
more information, see section 2.7.1.11.

The following diagram shows the compressed data values. Pr
el
im

in
ar

y

197 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

values

... A

values (60 bits): The set of values, each occupying 12 bits, in sequence and ordered low to
high. In the sequence, the first value occupies Bits 0 through 11, the second value occupies
Bits 12 through 23, and so on.

The startBit offset followed the sequence of Bit 0, 12, 24, and so on, up to Bit 48 as the data

was compressed into the 64-bit storage area. In addition to the end bits (Bits 60 through 63),
any unused bits are thus only padding, and the value of the padding depends on the result of
the various masking effects. For this compression algorithm, at most 5 values exist in the 64-
bit compressed storage value, and the process will begin again at Offset 0 with the next

compressedStorage value.

A (4 bits): The padding.

2.7.3.13 XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<16>>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<16>>, as specified in section 2.5.2.50. The RLE portion of this

compression follows the format described in section 2.7.3. The bit-packing subsegment portion of
the compression is identical to the 16-bit compression format that is used in XMRENoSplit
compression, as specified in section 2.7.1.12. For metadata information, see section 2.5.2.50.

2.7.3.14 XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<21>>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<21>>, as specified in section 2.5.2.51. The RLE portion of this
compression follows the format described in section 2.7.3. The bit-packing subsegment portion of
the compression is as follows.

Assume that each value to be compressed is named idVal. Each idVal value will be compressed into
the compressed storage in the following manner: The maximum size of the value to be compressed

MUST NOT exceed 32 bits. Assume that the resulting compressed storage area data value is named
compressedStorage. The entire compressed storage area is a multiple of 64 bits, so each
compressedStorage data value (the section of storage that is being written to) is 64 bits in size. For
more details about the actual values that are compressed by using this type of compression, see
section 2.2.2.3.2.

To simply this explanation, the process is divided into two phases.

In Phase 1, the minimum value (Min) is subtracted from the value to be compressed. The value of

Min can be found in the XML metadata file that is associated with the data file containing the
compressed data (see section 2.5.2.51). The result of this subtraction (idVal - Min) is then left bit
shifted by the current bit offset into the storage. Assume that this offset is named startBit, and the Pr

el
im

in
ar

y

198 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

resulting value after the bit shifting and subtraction is named shiftedVal. The offset (startBit) is a
multiple of 21.

The following pseudocode illustrates this phase:

SET shiftedVal = (idVal - Min) LEFT_BITSHIFT startBit

In Phase 2, the data value is placed into the compressed storage. A bitwise OR operation is
performed on the value (shiftedVal) and the compressed storage (compressedStorage). This
operation generates the final result, named storageWithValue.

The following pseudocode illustrates this phase:

SET storageWithValue = (compressedStorage) BITWISE_OR (shiftedVal)

Within the value, the order of the value’s bits is little-endian. Within the compressed storage,
however, individual values are placed low to high, with the first value occupying the lowest bits, the

second value occupying the next-lowest bits, and so on. All the file formats use little-endian values.
It is only the way individual values are ordered within the file that is being emphasized here,

because that specific ordering is required.

The same decompression method that is used in XMRENoSplit compression can be used here. For
more information, see section 2.7.1.13.

The following diagram shows the compressed data values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

value1 value2

... value3 A

value1 (21 bits): The first value in the sequence.

value2 (21 bits): The second value in the sequence.

value3 (21 bits): The third value in the sequence.

In the sequence, value1 occupies Bits 0 through 20, value2 occupies Bits 21 through 41,
and so on. The startBit offset followed the sequence of Bit 0, 21, and 42 as the data was
compressed into the 64-bit storage area. In addition to the end bit (Bit 63), any unused bits
are thus only padding, and the value of the padding depends on the result of the various

masking effects. For this compression algorithm, at most three values exist in the 64-bit
compressed storage value, and the process will begin again at Offset 0 with the next
compressedStorage value.

A (1 bit): The padding.

2.7.3.15 XMHybridRLECompressionInfo<class

XMRENoSplitCompressionInfo<32>>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class
XMRENoSplitCompressionInfo<32>>, as specified in section 2.5.2.52. The RLE portion of this Pr

el
im

in
ar

y

199 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

compression follows the format described in section 2.7.3. The bit-packing subsegment portion of
the compression is identical to the 32-bit compression format that is used in XMRENoSplit

compression, as specified in section 2.7.1.14. For metadata information, see section 2.5.2.52.

2.7.3.16 XMHybridRLECompressionInfo<class XM123CompressionInfo>

This section specifies the compression algorithm that is used when the compression metadata
specifies the compression to be of type XMHybridRLECompressionInfo<class
XM123CompressionInfo>, as specified in section 2.5.2.53. The RLE portion of this compression
follows the format described in section 2.7.3. However, only the bit-packing entry is used in the RLE
portion, except that in this case, the value that is associated with the bit-packing entry (which
typically contains the subsegment offset and the count of items that will follow in the bit-packing

compression subsegment) is used differently here. The offset is set to –1, as expected for the first
bit-packing entry; however, the count now represents the number of rows that exist in the segment.
The rest of the RLE segment is unused and padded with zeros. The bit-packing subsegment portion
of the compression is as follows.

Nothing is stored by using bit packing in this situation, except for 8 bytes that are set to zero to

indicate that the subsegment itself, which contains the bit-packing compression, is zero bytes in

size. For more information about the file format layout, including how the sizes of different sections
of the file are indicated, see section 2.3.1.1.

The minimum value (Min) is not used in the actual compression. It is used when recreating the
correct offset value for the row number. The Min value can be found in the XML metadata file that is
associated with the data file containing the compressed data (see section 2.5.2.53). The Min value
that is stored in the XML metadata is actually an offset. Together, the number of rows for the
segment and the Min value for the segment allow the creation of the correct overall row number for

the entire column, which could be composed of multiple segments. The Min value is a 32-bit value.

The reason is that this compression is used for the internally created RowNumber column (section
2.3.4), and that column is zero indexed through the total number of rows in the column.

For example, the first Min value that is stored, for the first segment, is zero. Therefore, the range of
rows for that segment is from Min through Min plus the total number of rows for that segment

minus one. The minus one is because of zero indexing. For a total of five rows in the first segment,
the indexing ranges from Min through Min + 4, where the offset is zero. For the next segment, the

offset is the next index beyond the last value in the previous segment. Again, if five rows exist in
the next segment, the index will range from Min + 5 through Min + 9, where the offset (the value
that is stored) is 5. Moving from one segment to the next, the row numbers thus continue
sequentially without any breaks.

For this compression, the maximum that can be indexed is 2 billion (hexadecimal 0x77359400). This
number includes the Min value. In other words, the Min value plus the last row number is, at most,

2 billion.

2.7.4 Huffman Compression

Huffman compression is the only type of compression that is used when strings are stored and
compressed in a dictionary file. String data is not stored in the column data storage files but in a

dictionary file—specifically, in an XM_TYPE_STRING dictionary file. (For more information about
XM_TYPE_STRING dictionaries, see section 2.3.2.1.2. For more information about the per-page

string store information in particular, see section 2.3.2.1.2.4.) The strings might be compressed.
BLOBs are also stored in XM_TYPE_STRING dictionaries after they have been encoded by means
of base64 encoding. Therefore, stored BLOBs are treated as single character set strings and can be
successfully compressed by using Huffman compression, as well. Pr

el
im

in
ar

y

200 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

If any of the strings are compressed, the compression used is always classic Huffman encoding.
Although Huffman encoding has many forms, the Huffman tree and algorithm—especially of classic

Huffman encoding—is well known and will not be discussed in detail here.

In short, in Huffman encoding, the algorithm determines the probability that a particular symbol

from the assigned Huffman alphabet will be encountered in the stream of symbols being encoded.
Using this statistical knowledge of the frequencies of different symbols in the alphabet being used, a
binary tree of 2 × N – 1 nodes can be constructed, where N represents the number of symbols used
in the text being encoded. (Note that N can be the size of the Huffman alphabet or less than the size
of the Huffman alphabet being used.) Symbols that have the greatest frequency of occurrence in the
text to be encoded are assigned higher positions in the binary tree than symbols that have a lower
frequency of occurrence. The binary tree that is constructed does not need to be a balanced binary

tree.

2.7.4.1 Huffman Implementation Constraints

In the implementation of Huffman encoding that is used here, further constraints and guidelines
exist and are explained in the following subsections.

2.7.4.1.1 Classical Unbalanced Huffman Tree

As stated in section 2.7.4, in this implementation, Huffman tree creation employs a traditional,
classical approach that uses the frequency of occurrence of a symbol in the text to be encoded to
build the binary tree hierarchy. Additionally, this method does not require that the tree be balanced.

Therefore, encodings MUST follow a classic Huffman approach, but the tree that is generated does
not need to be a balanced tree.

2.7.4.1.2 Minimum and Maximum Codeword Sizes

This implementation of Huffman encoding does not support the encoding of symbols that are either
zero bits or 1 bit in length, but it does limit the maximum size of codewords. Therefore, it is
important that for this Huffman implementation, codeword lengths be limited to a range that has a

minimum and a maximum value.

The length of each codeword MUST be greater than or equal to 2 bits and less than or equal to 15
bits.

However, the decode bits value (uiDecodeBits) that is specified in the dictionary file MUST NOT
exceed 12—even when more than 12 bits are used for codewords—otherwise, an error will occur.
(For more information about uiDecodeBits, see section 2.3.2.1.2.5.)

The system creates lookup tables that handle codewords of a size only up to 12 bits. Any codewords
that are longer than 12 bits in length require traditional Huffman tree traversal techniques for
decoding. Therefore, when setting the decode bits value (uiDecodeBits) in the XM_TYPE_STRING
hash data dictionary file (section 2.3.2.1.2), consider the following guidelines for deciding what

value to set as the uiDecodeBits size.

First, if the longest codeword is 8 bits or less, it is suggested that uiDecodeBits be set to that

longest codeword value.

Second, if the longest codeword is greater than 12 bits, it is suggested that uiDecodeBits be set to
12. Setting uiDecodeBits to any value greater than 12 will result in an error. Pr

el
im

in
ar

y

201 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Third, if the longest codeword is greater than or equal to 9 but less than 12 bits, it is suggested that
uiDecodeBits be set to the codeword size that includes 99 percent of all the compressed bits in the

encoded text (meaning the encoded text for that Huffman encoding on that dictionary page).

The total number of compressed bits can be determined by summing over all codewords and using

the value equal to the frequency of each codeword multiplied by the number of bits in that
codeword, as shown in the following pseudocode:

FOR all Codewords

SET totalCompressedBits = totalCompressedBits + (codewordFrequency MULTIPLY
numberOfBitsInCodeword)

END FOR

The smallest codeword bit size that corresponds to 99 percent coverage is the value to use for

uiDecodeBits to help ensure that almost all of the bits are found via the fast lookup tables and that
only a few, infrequently used bytes are left out of the table.

2.7.4.1.3 Huffman Alphabet Size

The Huffman alphabet size that is used in this implementation is limited to 256 symbols or less and
is byte oriented. This means that this Huffman encoding algorithm encodes bytes rather than actual

characters. The algorithm has no real knowledge of the languages being used.

Some languages—those that fit into 128-bit character sets, such as ASCII—have a one-to-one
relationship between a character and an encoded byte. Other languages require multiple bytes to
encode a character. In both cases, the characters are simply encoded byte by byte in the Huffman
tree without regard to how any of these single or multiple bytes relate to each other. In other
words, the Huffman implementation has no knowledge of the meaning of the individual bytes and
simply encodes each byte according to its frequency of occurrence in the string byte stream.

The encoded Huffman alphabet array that is contained within the dictionary page for those
compressed strings reflects the byte’s numeric value. This numeric value is used as the index into

the array, and the content of the array index item is the codeword size that is used for that index
(byte) value. A byte value is 8 bits and can therefore be represented as a numeric value from 0
through 255. If the codeword size that is used is zero, the meaning is that the index (byte) value
was not used in the tree.

The actual frequencies used to generate the Huffman tree (and therefore the resulting codeword

assignments) is not persisted to the dictionary file. Even so, the encoded array of bytes and their
corresponding codeword sizes, and the knowledge that the minimum codeword size is required to be
2 bits, can be used to reconstruct the original, classic Huffman tree.

It is critical that the encoded Huffman alphabet array be correct and adhere to the criteria detailed
here for this Huffman implementation. The array MUST encode the codeword lengths for each used
alphabet character (byte value) as well as set unused elements to zero. Those codeword lengths

MUST be from 2 through 15 bits, and the classic Huffman tree approach MUST be used when
deciding symbol-to-codeword assignment. For an example of a Huffman tree implementation that
uses these criteria, see section 2.7.4.2.

2.7.4.1.4 Single and Multiple Character Set Modes

This Huffman encoding implementation supports both single character set encoding and multiple
character set encoding. For single character set encoding, where the entire text that is encoded uses

one character set, the upper byte is not encoded but is instead stored separately. For more Pr
el
im

in
ar

y

202 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

information about setting single versus multiple character set mode, see section 2.3.2.1.2.4.2.
During the decoding process, this character set value MUST be added back to each decoded symbol

to recreate a valid character in the byte stream.

By contrast, in multiple character set encoding, where the text to be encoded contains two or more

character sets that are intermixed in some way, both the upper and the lower byte MUST be
encoded during Huffman encoding, but the decoding process does not require any character set byte
to be added back to the stream. Therefore, encoding and decoding processes need to take these
differences into account when deconstructing and reconstructing the characters.

A multiple byte character set does not necessarily use only the multiple character set mode. A
multiple byte character set can use a single character set mode. It depends on whether the specified
bytes (the first byte, the third, the fifth, and so on) in the byte stream are the same.

For example, in the Unicode version of ASCII, the first byte is the same as the third byte, which is
the same as the fifth, and so on. This is because those bytes represent the character set and are
each the upper byte of a 2-byte character. A single character set mode works fine in this situation.
Those bytes, each alternating with the byte that actually contains the character code, can safely be

pulled out of the byte stream and added back to each character byte later, during the decoding
process.

However, if the character set uses multiple bytes per character, not counting the byte that
designates the character set (the language), the first byte might not be the same as the third byte
or the fifth byte. In such a case, using a multiple character set mode helps to ensure that each byte
is encoded in the stream and that none are removed.

Even so, it still depends on the individual characters within that language. It is possible that the
strings being compressed, even though they are multiple-byte characters, still have duplicate
alternative bytes in the byte stream, mimicking a single byte character set. This can happen if only

a few strings with only a few characters are being encoded. In this case, the single character set
mode can be used and will not cause any data corruption or loss.

2.7.4.1.5 Huffman Information Provided in an XM_TYPE_STRING Dictionary

The XM_TYPE_STRING hash data dictionary file format (section 2.3.2.1.2) supports having
multiple pages, either compressed or uncompressed. Each compressed page contains its own
Huffman alphabet encoding array with the codeword sizes of the symbols, the character set mode,

the character set value (in the case of single character set mode), the size of the longest codeword
used for the internally generated lookup table, and the actual encoded bit stream for that page’s
strings. For more information about compressed pages, see section 2.3.2.1.2.4.2. A discussion
about how these items are used will now ensue.

As already mentioned, the XM_TYPE_STRING dictionary file contains the information that is
needed to decode the Huffman encoded strings for that page of that dictionary. This includes the

decode bits value (uiDecodeBits), which represents a maximum codeword length that is used in
the faster, internally generated lookup table. It does not mean that only codewords up to that
maximum length were used in the Huffman tree. For example, if uiDecodeBits is 4, that does not
mean that only codewords of a size up to 4 (that is, 2, 3, and 4) exist, but that typically no
codewords are generated that are more than 4 bits in length. (For more information about

uiDecodeBits, see section 2.3.2.1.2.5.)

For uiDecodeBits values less than or equal to 8, typically only codewords of that length or less

were used, but for values greater than 8, the chances of having codewords greater than the
uiDecodeBits value are more likely to occur. Codewords can actually go up to 15 bits in length. For
more information, see section 2.7.4.1.2. Pr

el
im

in
ar

y

203 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The dictionary also includes the encoded Huffman alphabet used. Again, this is an array of values,
where the index of the array represents the symbol value (the numeric value of the byte being

encoded), and the contents of that indexed item is the length of the codeword used for that symbol.
In the dictionary file, this array is compacted down to use only 128 bytes, placing data in both the

upper and lower bytes. Therefore, by treating the upper and lower bytes as individual elements, a
Huffman alphabet array of 256 bytes can be generated. For more information about the layout of
the stored variables just discussed, see section 2.3.2.1.2.4.2.

From this codeword length array, the knowledge of a classic Huffman tree, and the information
detailed here regarding the constraints and guidelines that are used in the encoding process, a
Huffman tree can be reconstructed. After that is accomplished, the codeword (bit sequence) for each
byte symbol can be determined by walking the tree to that particular symbol.

At this point, the codewords for each byte symbol are used to decode the compressed strings (the
bit stream). If the stream is using a single character set, the character set value (a byte value) is
added back into the odd bytes (the first byte, the third, and so on) of the stream, and the actual
byte stream of characters is then reconstructed from the encoded bit stream. For an example of this
process, see section 2.7.4.2.

Note that the codewords (bit sequences) are encoded without breaks in the bit stream. Therefore, if

one string takes 15 bits to fully encode (as a series of codewords that together total 15 bits), and
the next string takes 10 bits, the resulting bit stream of encoded text will be 25 bits. No padding
exists between strings.

The vector of record handle structures that is contained at the end of the dictionary file provides the
page number and bit offset for each compressed string in the dictionary (or the page number and
byte offset for uncompressed strings). Using those record handle structures, the continuous bit
stream of compressed strings can be correctly divided before decoding them into a byte stream (see

section 2.3.2.1.2.5).

2.7.4.2 Conceptual Overview of a Huffman Tree

To demonstrate how Huffman encoding is used, this section provides a conceptual overview. The
field names uiDecodeBits and encodeArray come from the XM_TYPE_STRING hash data

dictionary (section 2.3.2.1.2.5).

Assume that a data column containing two strings representing gender exists. The strings are

"Female" and "Male" and appear to use the ASCII character set. Internally, they actually use
Unicode because Unicode contains the ASCII character set. The strings are stored in a dictionary
and are Huffman encoded. The dictionary page that contains the encoded strings has the character
set (a value of zero, which indicates English) and indicates that the strings are using single
character set Huffman mode. The page also indicates that the value of the lookup table decode bits
(uiDecodeBits) is 3, which means that the characters in the strings were most likely encoded with

3-bit codewords and 2-bit codewords (see section 2.7.4.1.2). Single-bit codewords are not allowed.

The dictionary also has an encoded array (encodeArray) of the Huffman alphabet used. The
indexes of this array correspond to the Huffman alphabet symbols (byte symbols), and the content
of each indexed element indicates the codeword length that is used for that symbol (byte) in the
encoded string. The symbols themselves are bytes, not characters, and vary in value from 0 through

255, which is also why the size of the Huffman alphabet array is fixed at 256 elements.

In this conceptual overview, almost all the array elements are equal to zero (that is, the codeword

size equals zero), which means that those byte symbols are not used, except for the elements at the
following indexes:

The element at index 70 contains a value of 3. Pr
el
im

in
ar

y

204 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The element at index 77 contains a value of 3.

The element at index 97 contains a value of 3.

The element at index 101 contains a value of 2.

The element at index 108 contains a value of 2.

The element at index 109 contains a value of 3.

Note that the preceding index values (70, 77, 97, 101, 108, and 109) correspond to the ASCII
numeric character values for the letters, ‘F’, ‘M’, ‘a’, ‘e’, ‘l’, and ‘m’.

Because the strings are using English (ASCII), this behavior is expected because a one-to-one

relationship exists between the byte value and the character value in ASCII (or in Unicode using this
character set). This would not be the case if the character set used needed more than one byte per
character.

The dictionary also has the encoded strings as a bit stream. Note that this is a bit stream, not a byte

stream. In this case, the encoded bit stream will be decoded as the string "FemaleMale", which will
then be a continuous byte (not bit) stream of decoded characters. Remember that the character set
upper byte will be added back to each of these bytes. The bit stream itself is 25 bits in length with

the following sequence ‘1000011111001001011100100’.

The following diagram shows a classic Huffman tree that is created by using the frequency of
occurrence for each character. Frequencies (from the original string stream "FemaleMale") are
shown in the diagram.

However, this tree also shows that symbols with 2-bit codewords are at one level (the top level that
is allowed), symbols with 3-bit codewords are at the next level down, and so on through all the

codeword values. In this case, only 2-bit and 3-bit codeword levels exist. The symbol byte values
(101 and 108 on the 2-bit level, and the next four symbol byte values on the 3-bit level) are placed
according to a classic Huffman implementation, where the lowest value goes to the leftmost node,
the next-highest value goes to the right of that node, and so on across the level.

Pr
el
im

in
ar

y

205 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Figure 1: Huffman tree example

In the preceding diagram, walking down the tree—either left (0) or right (1) to each leaf node—

shows how the codewords for each character are generated. Therefore, after constructing a Huffman
tree, the resulting codewords can be used to decode the bit stream that contains the encoded
strings. The bit stream is purely a continuous stream of bits. Errors could result if this bit stream is
treated as a series of integers, words, or other types because doing so could induce format errors.

2.7.5 Xpress Compression

The entire database can be persisted to disk as a Spreadsheet Data Model file (section 2.1). This file
will be compressed by using Xpress compression, as specified in [MS-WUSP] section 2.1.1. This
compression is separate from and in addition to any compression that occurs within any individual
file contained in the Spreadsheet Data Model file.

Pr
el
im

in
ar

y

%5bMS-WUSP%5d.pdf

206 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

3 Structure Examples

3.1 tbl.xml Metadata File

The following example shows the content of a tbl.xml file, as specified in section 2.5, for a table. As
required, this tbl.xml file has an XMObject element as its document node (section 2.5.1), with the
value of the class attribute as "XMSimpleTable" (section 2.5.2.1). This metadata file contains the
metadata for the example multiple-segment .idf column data file that is described in section 3.2.

<XMObject xmlns="http://schemas.microsoft.com/analysisservices/imbi"

 xmlns:imbi200=

 "http://schemas.microsoft.com/analysisservices/2010/imbi/200"

 xmlns:imbi200_200=

 "http://schemas.microsoft.com/analysisservices/2010/imbi/200/200"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 class="XMSimpleTable"

 name="Table_1_51adc096-9274-4394-b47d-a2fcabfbc1de"

 ProviderVersion="0">

 <Properties>

 <Version xsi:type="xsd:int">1</Version>

 <Settings xsi:type="xsd:long">4353</Settings>

 <RIViolationCount xsi:type="xsd:long">0</RIViolationCount>

 </Properties>

 <Members>

 <Member>

 <Name>SegmentMap</Name>

 <XMObject class="XMMultiPartSegmentMap" ProviderVersion="0">

 <Properties>

 <FirstPartitionRecordCount xsi:type="xsd:long">0

 </FirstPartitionRecordCount>

 <FirstPartitionSegmentCount xsi:type="xsd:long">0

 </FirstPartitionSegmentCount>

 </Properties>

 <Collections>

 <Collection>

 <Name>Partitions</Name>

 <XMObject class=

 "XMSegmentEqualMapEx<XMSegmentEqualMap_FastInstantiation>"

 ProviderVersion="0">

 <Properties>

 <Segments xsi:type="xsd:long">3</Segments>

 <Records xsi:type="xsd:long">2101256</Records>

 <RecordsPerSegment xsi:type="xsd:long">1048576

 </RecordsPerSegment>

 </Properties>

 </XMObject>

 </Collection>

 </Collections>

 </XMObject>

 </Member>

 <Member>

 <Name>TableStats</Name>

 <XMObject class="XMTableStats" ProviderVersion="0">

 <Properties>

 <SegmentSize xsi:type="xsd:long">0</SegmentSize>

 <Usage xsi:type="xsd:int">0</Usage>

 </Properties> Pr
el
im

in
ar

y

207 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 </XMObject>

 </Member>

 </Members>

 <Collections>

 <Collection>

 <Name>Partitions</Name>

 <XMObject class="XMPartition"

 name="Table_1_51adc096-9274-4394-b47d-a2fcabfbc1de"

 ProviderVersion="0">

 <Properties>

 <IsProcessed xsi:type="xsd:boolean">true</IsProcessed>

 <Partition xsi:type="xsd:int">0</Partition>

 </Properties>

 </XMObject>

 </Collection>

 <Collection>

 <Name>Columns</Name>

 <XMObject class="XMRawColumn" name="RowNumber" ProviderVersion="1">

 <Properties>

 <Settings xsi:type="xsd:long">1025</Settings>

 <ColumnFlags xsi:type="xsd:long">31</ColumnFlags>

 <Collation/>

 <OrderByColumn/>

 <Locale xsi:type="xsd:long">1033</Locale>

 <BinaryCharacters xsi:type="xsd:unsignedInt">0</BinaryCharacters>

 </Properties>

 <Members>

 <Member>

 <Name>IntrinsicHierarchy</Name>

 <XMObject class="XMHierarchy"

 name="[Hierarchy for column RowNumber]"

 ProviderVersion="0">

 <Properties>

 <SortOrder xsi:type="xsd:int">0</SortOrder>

 <IsProcessed xsi:type="xsd:boolean">true</IsProcessed>

 <TypeMaterialization xsi:type="xsd:int">3</TypeMaterialization>

 <ColumnPosition2DataID xsi:type="xsd:long">-1</ColumnPosition2DataID>

 <ColumnDataID2Position xsi:type="xsd:long">-1</ColumnDataID2Position>

 <DistinctDataIDs xsi:type="xsd:long">2101256</DistinctDataIDs>

 <TableStore/>

 </Properties>

 </XMObject>

 </Member>

 <Member>

 <Name>ColumnStats</Name>

 <XMObject class="XMColumnStats" ProviderVersion="0">

 <Properties>

 <DistinctStates xsi:type="xsd:int">2101256</DistinctStates>

 <MinDataID xsi:type="xsd:int">3</MinDataID>

 <MaxDataID xsi:type="xsd:int">2101258</MaxDataID>

 <OriginalMinSegmentDataID xsi:type="xsd:int">2

 </OriginalMinSegmentDataID>

 <RLESortOrder xsi:type="xsd:long">-1</RLESortOrder>

 <RowCount xsi:type="xsd:long">2101256</RowCount>

 <HasNulls xsi:type="xsd:boolean">false</HasNulls>

 <RLERuns xsi:type="xsd:long">0</RLERuns>

 <OthersRLERuns xsi:type="xsd:long">0</OthersRLERuns>

 <Usage xsi:type="xsd:int">3</Usage>

 <DBType xsi:type="xsd:short">3</DBType> Pr
el
im

in
ar

y

208 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <XMType xsi:type="xsd:int">0</XMType>

 <CompressionType xsi:type="xsd:int">0</CompressionType>

 <CompressionParam xsi:type="xsd:long">0</CompressionParam>

 <EncodingHint xsi:type="xsd:int">1</EncodingHint>

 <AggCounter xsi:type="xsd:long">0</AggCounter>

 <WhereCounter xsi:type="xsd:long">0</WhereCounter>

 <OrderByCounter xsi:type="xsd:long">0</OrderByCounter>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 <Collections>

 <Collection>

 <Name>Segments</Name>

 <XMObject class="XMColumnSegment" ProviderVersion="0">

 <Properties>

 <Records xsi:type="xsd:long">1048576</Records>

 <Mask xsi:type="xsd:long">0</Mask>

 </Properties>

 <Members>

 <Member>

 <Name>SubSegment</Name>

 <XMObject class="XMColumnSegment"

 ProviderVersion="0">

 <Properties>

 <Records xsi:type="xsd:long">1048576</Records>

 <Mask xsi:type="xsd:long">0</Mask>

 </Properties>

 <Members>

 <Member>

 <Name>CompressionInfo</Name>

 <XMObject class="XM123CompressionInfo"

 ProviderVersion="0">

 <Properties>

 <Min xsi:type="xsd:int">3</Min>

 </Properties>

 </XMObject>

 </Member>

 <Member>

 <Name>ColumnSegmentStats</Name>

 <XMObject class="XMColumnSegmentStats"

 ProviderVersion="0">

 <Properties>

 <DistinctStates xsi:type="xsd:long">0</DistinctStates>

 <MinDataID xsi:type="xsd:int">2</MinDataID>

 <MaxDataID xsi:type="xsd:int">2</MaxDataID>

 <OriginalMinSegmentDataID xsi:type="xsd:int">2

 </OriginalMinSegmentDataID>

 <RLESortOrder xsi:type="xsd:long">-1</RLESortOrder>

 <RowCount xsi:type="xsd:long">0</RowCount>

 <HasNulls xsi:type="xsd:boolean">false</HasNulls>

 <RLERuns xsi:type="xsd:long">0</RLERuns>

 <OthersRLERuns xsi:type="xsd:long">0</OthersRLERuns>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 </Member> Pr
el
im

in
ar

y

209 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <Member>

 <Name>CompressionInfo</Name>

 <XMObject class=

 "XMHybridRLECompressionInfo<class XM123CompressionInfo>"

 ProviderVersion="0">

 <Members>

 <Member>

 <Name>RLECompression</Name>

 <XMObject class="XMRLECompressionInfo"

 ProviderVersion="0">

 <Properties>

 <BookmarkBits xsi:type="xsd:long">24</BookmarkBits>

 <StorageAllocSize xsi:type="xsd:long">32

 </StorageAllocSize>

 <StorageUsedSize xsi:type="xsd:long">2</StorageUsedSize>

 <SegmentNeedsResizing xsi:type="xsd:boolean">false

 </SegmentNeedsResizing>

 </Properties>

 </XMObject>

 </Member>

 <Member>

 <Name>SubCompression</Name>

 <XMObject class="XM123CompressionInfo"

 ProviderVersion="0">

 <Properties>

 <Min xsi:type="xsd:int">3</Min>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 </Member>

 <Member>

 <Name>ColumnSegmentStats</Name>

 <XMObject class="XMColumnSegmentStats"

 ProviderVersion="0">

 <Properties>

 <DistinctStates xsi:type="xsd:long">0</DistinctStates>

 <MinDataID xsi:type="xsd:int">3</MinDataID>

 <MaxDataID xsi:type="xsd:int">1048578</MaxDataID>

 <OriginalMinSegmentDataID xsi:type="xsd:int">2

 </OriginalMinSegmentDataID>

 <RLESortOrder xsi:type="xsd:long">-1</RLESortOrder>

 <RowCount xsi:type="xsd:long">1048576</RowCount>

 <HasNulls xsi:type="xsd:boolean">false</HasNulls>

 <RLERuns xsi:type="xsd:long">0</RLERuns>

 <OthersRLERuns xsi:type="xsd:long">0</OthersRLERuns>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 <XMObject class="XMColumnSegment" ProviderVersion="0">

 <Properties>

 <Records xsi:type="xsd:long">1048576</Records>

 <Mask xsi:type="xsd:long">0</Mask>

 </Properties>

 <Members>

 <Member> Pr
el
im

in
ar

y

210 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <Name>SubSegment</Name>

 <XMObject class="XMColumnSegment" ProviderVersion="0">

 <Properties>

 <Records xsi:type="xsd:long">1048576</Records>

 <Mask xsi:type="xsd:long">0</Mask>

 </Properties>

 <Members>

 <Member>

 <Name>CompressionInfo</Name>

 <XMObject class="XM123CompressionInfo"

 ProviderVersion="0">

 <Properties>

 <Min xsi:type="xsd:int">1048579</Min>

 </Properties>

 </XMObject>

 </Member>

 <Member>

 <Name>ColumnSegmentStats</Name>

 <XMObject class="XMColumnSegmentStats"

 ProviderVersion="0">

 <Properties>

 <DistinctStates xsi:type="xsd:long">0

 </DistinctStates>

 <MinDataID xsi:type="xsd:int">2</MinDataID>

 <MaxDataID xsi:type="xsd:int">2</MaxDataID>

 <OriginalMinSegmentDataID xsi:type="xsd:int">2

 </OriginalMinSegmentDataID>

 <RLESortOrder xsi:type="xsd:long">-1

 </RLESortOrder>

 <RowCount xsi:type="xsd:long">0</RowCount>

 <HasNulls xsi:type="xsd:boolean">false

 </HasNulls>

 <RLERuns xsi:type="xsd:long">0</RLERuns>

 <OthersRLERuns xsi:type="xsd:long">0

 </OthersRLERuns>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 </Member>

 <Member>

 <Name>CompressionInfo</Name>

 <XMObject class=

 "XMHybridRLECompressionInfo<class XM123CompressionInfo>"

 ProviderVersion="0">

 <Members>

 <Member>

 <Name>RLECompression</Name>

 <XMObject class="XMRLECompressionInfo"

 ProviderVersion="0">

 <Properties>

 <BookmarkBits xsi:type="xsd:long">24

 </BookmarkBits>

 <StorageAllocSize xsi:type="xsd:long">32

 </StorageAllocSize>

 <StorageUsedSize xsi:type="xsd:long">2

 </StorageUsedSize>

 <SegmentNeedsResizing xsi:type="xsd:boolean"> Pr
el
im

in
ar

y

211 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 false</SegmentNeedsResizing>

 </Properties>

 </XMObject>

 </Member>

 <Member>

 <Name>SubCompression</Name>

 <XMObject class="XM123CompressionInfo"

 ProviderVersion="0">

 <Properties>

 <Min xsi:type="xsd:int">1048579</Min>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 </Member>

 <Member>

 <Name>ColumnSegmentStats</Name>

 <XMObject class="XMColumnSegmentStats" ProviderVersion="0">

 <Properties>

 <DistinctStates xsi:type="xsd:long">0

 </DistinctStates>

 <MinDataID xsi:type="xsd:int">1048579</MinDataID>

 <MaxDataID xsi:type="xsd:int">2097154</MaxDataID>

 <OriginalMinSegmentDataID xsi:type="xsd:int">2

 </OriginalMinSegmentDataID>

 <RLESortOrder xsi:type="xsd:long">-1</RLESortOrder>

 <RowCount xsi:type="xsd:long">1048576</RowCount>

 <HasNulls xsi:type="xsd:boolean">false</HasNulls>

 <RLERuns xsi:type="xsd:long">0</RLERuns>

 <OthersRLERuns xsi:type="xsd:long">0</OthersRLERuns>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 <XMObject class="XMColumnSegment" ProviderVersion="0">

 <Properties>

 <Records xsi:type="xsd:long">4104</Records>

 <Mask xsi:type="xsd:long">0</Mask>

 </Properties>

 <Members>

 <Member>

 <Name>SubSegment</Name>

 <XMObject class="XMColumnSegment"

 ProviderVersion="0">

 <Properties>

 <Records xsi:type="xsd:long">4104</Records>

 <Mask xsi:type="xsd:long">0</Mask>

 </Properties>

 <Members>

 <Member>

 <Name>CompressionInfo</Name>

 <XMObject class="XM123CompressionInfo"

 ProviderVersion="0">

 <Properties>

 <Min xsi:type="xsd:int">2097155</Min>

 </Properties>

 </XMObject> Pr
el
im

in
ar

y

212 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 </Member>

 <Member>

 <Name>ColumnSegmentStats</Name>

 <XMObject class="XMColumnSegmentStats"

 ProviderVersion="0">

 <Properties>

 <DistinctStates xsi:type="xsd:long">0

 </DistinctStates>

 <MinDataID xsi:type="xsd:int">2</MinDataID>

 <MaxDataID xsi:type="xsd:int">2</MaxDataID>

 <OriginalMinSegmentDataID xsi:type="xsd:int">2

 </OriginalMinSegmentDataID>

 <RLESortOrder xsi:type="xsd:long">-1

 </RLESortOrder>

 <RowCount xsi:type="xsd:long">0</RowCount>

 <HasNulls xsi:type="xsd:boolean">false

 </HasNulls>

 <RLERuns xsi:type="xsd:long">0</RLERuns>

 <OthersRLERuns xsi:type="xsd:long">0

 </OthersRLERuns>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 </Member>

 <Member>

 <Name>CompressionInfo</Name>

 <XMObject class=

 "XMHybridRLECompressionInfo<class XM123CompressionInfo>"

 ProviderVersion="0">

 <Members>

 <Member>

 <Name>RLECompression</Name>

 <XMObject class="XMRLECompressionInfo"

 ProviderVersion="0">

 <Properties>

 <BookmarkBits xsi:type="xsd:long">24

 </BookmarkBits>

 <StorageAllocSize xsi:type="xsd:long">32

 </StorageAllocSize>

 <StorageUsedSize xsi:type="xsd:long">2

 </StorageUsedSize>

 <SegmentNeedsResizing xsi:type="xsd:boolean">

 false</SegmentNeedsResizing>

 </Properties>

 </XMObject>

 </Member>

 <Member>

 <Name>SubCompression</Name>

 <XMObject class="XM123CompressionInfo"

 ProviderVersion="0">

 <Properties>

 <Min xsi:type="xsd:int">2097155</Min>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject> Pr
el
im

in
ar

y

213 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 </Member>

 <Member>

 <Name>ColumnSegmentStats</Name>

 <XMObject class="XMColumnSegmentStats"

 ProviderVersion="0">

 <Properties>

 <DistinctStates xsi:type="xsd:long">0

 </DistinctStates>

 <MinDataID xsi:type="xsd:int">2097155</MinDataID>

 <MaxDataID xsi:type="xsd:int">2101258</MaxDataID>

 <OriginalMinSegmentDataID xsi:type="xsd:int">2

 </OriginalMinSegmentDataID>

 <RLESortOrder xsi:type="xsd:long">-1</RLESortOrder>

 <RowCount xsi:type="xsd:long">4104</RowCount>

 <HasNulls xsi:type="xsd:boolean">false</HasNulls>

 <RLERuns xsi:type="xsd:long">0</RLERuns>

 <OthersRLERuns xsi:type="xsd:long">0</OthersRLERuns>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 </Collection>

 </Collections>

 <DataObjects>

 <DataObject>

 <XMObject class="XMValueDataDictionary<XM_Long>"

 ProviderVersion="0">

 <Properties>

 <DataVersion xsi:type="xsd:int">1</DataVersion>

 <BaseId xsi:type="xsd:long">-3</BaseId>

 <Magnitude xsi:type="xsd:double">1.</Magnitude>

 </Properties>

 </XMObject>

 </DataObject>

 <DataObject>

 <XMObject class="XMRawColumnPartitionDataObject" name=

 "1.Table_1_51adc096-9274-4394-b47d-a2fcabfbc1de.RowNumber.0.idf"

 ProviderVersion="0">

 <Properties>

 <DataVersion xsi:type="xsd:int">1</DataVersion>

 <Partition xsi:type="xsd:int">0</Partition>

 <SegmentCount xsi:type="xsd:int">3</SegmentCount>

 </Properties>

 </XMObject>

 </DataObject>

 </DataObjects>

 </XMObject>

 <XMObject class="XMRawColumn" name="Column_1" ProviderVersion="1">

 <Properties>

 <Settings xsi:type="xsd:long">1025</Settings>

 <ColumnFlags xsi:type="xsd:long">8</ColumnFlags>

 <Collation/>

 <OrderByColumn/>

 <Locale xsi:type="xsd:long">1033</Locale>

 <BinaryCharacters xsi:type="xsd:unsignedInt">0</BinaryCharacters>

 </Properties>

 <Members>

 <Member> Pr
el
im

in
ar

y

214 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <Name>IntrinsicHierarchy</Name>

 <XMObject class="XMHierarchy" name="[Hierarchy for column Column_1]"

ProviderVersion="0">

 <Properties>

 <SortOrder xsi:type="xsd:int">0</SortOrder>

 <IsProcessed xsi:type="xsd:boolean">true</IsProcessed>

 <TypeMaterialization xsi:type="xsd:int">0</TypeMaterialization>

 <ColumnPosition2DataID xsi:type="xsd:long">0</ColumnPosition2DataID>

 <ColumnDataID2Position xsi:type="xsd:long">1</ColumnDataID2Position>

 <DistinctDataIDs xsi:type="xsd:long">8</DistinctDataIDs>

 <TableStore>H$Table_1_51adc096-9274-4394-b47d-

a2fcabfbc1de$Column_1</TableStore>

 </Properties>

 </XMObject>

 </Member>

 <Member>

 <Name>ColumnStats</Name>

 <XMObject class="XMColumnStats" ProviderVersion="0">

 <Properties>

 <DistinctStates xsi:type="xsd:int">0</DistinctStates>

 <MinDataID xsi:type="xsd:int">3</MinDataID>

 <MaxDataID xsi:type="xsd:int">10</MaxDataID>

 <OriginalMinSegmentDataID xsi:type="xsd:int">2</OriginalMinSegmentDataID>

 <RLESortOrder xsi:type="xsd:long">-1</RLESortOrder>

 <RowCount xsi:type="xsd:long">2101256</RowCount>

 <HasNulls xsi:type="xsd:boolean">false</HasNulls>

 <RLERuns xsi:type="xsd:long">12</RLERuns>

 <OthersRLERuns xsi:type="xsd:long">1</OthersRLERuns>

 <Usage xsi:type="xsd:int">3</Usage>

 <DBType xsi:type="xsd:short">20</DBType>

 <XMType xsi:type="xsd:int">0</XMType>

 <CompressionType xsi:type="xsd:int">0</CompressionType>

 <CompressionParam xsi:type="xsd:long">0</CompressionParam>

 <EncodingHint xsi:type="xsd:int">0</EncodingHint>

 <AggCounter xsi:type="xsd:long">0</AggCounter>

 <WhereCounter xsi:type="xsd:long">0</WhereCounter>

 <OrderByCounter xsi:type="xsd:long">0</OrderByCounter>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 <Collections>

 <Collection>

 <Name>Segments</Name>

 <XMObject class="XMColumnSegment" ProviderVersion="0">

 <Properties>

 <Records xsi:type="xsd:long">1048576</Records>

 <Mask xsi:type="xsd:long">1</Mask>

 </Properties>

 <Members>

 <Member>

 <Name>SubSegment</Name>

 <XMObject class="XMColumnSegment" ProviderVersion="0">

 <Properties>

 <Records xsi:type="xsd:long">0</Records>

 <Mask xsi:type="xsd:long">0</Mask>

 </Properties>

 <Members>

 <Member> Pr
el
im

in
ar

y

215 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <Name>CompressionInfo</Name>

 <XMObject class="XMRENoSplitCompressionInfo<2>"

 ProviderVersion="0">

 <Properties>

 <Min xsi:type="xsd:int">3</Min>

 </Properties>

 </XMObject>

 </Member>

 <Member>

 <Name>ColumnSegmentStats</Name>

 <XMObject class="XMColumnSegmentStats"

 ProviderVersion="0">

 <Properties>

 <DistinctStates xsi:type="xsd:long">0

 </DistinctStates>

 <MinDataID xsi:type="xsd:int">2</MinDataID>

 <MaxDataID xsi:type="xsd:int">2</MaxDataID>

 <OriginalMinSegmentDataID xsi:type="xsd:int">2

 </OriginalMinSegmentDataID>

 <RLESortOrder xsi:type="xsd:long">-1

 </RLESortOrder>

 <RowCount xsi:type="xsd:long">0</RowCount>

 <HasNulls xsi:type="xsd:boolean">false

 </HasNulls>

 <RLERuns xsi:type="xsd:long">0</RLERuns>

 <OthersRLERuns xsi:type="xsd:long">0

 </OthersRLERuns>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 </Member>

 <Member>

 <Name>CompressionInfo</Name>

 <XMObject class=

"XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<2>>"

 ProviderVersion="0">

 <Members>

 <Member>

 <Name>RLECompression</Name>

 <XMObject class="XMRLECompressionInfo" ProviderVersion="0">

 <Properties>

 <BookmarkBits xsi:type="xsd:long">14

 </BookmarkBits>

 <StorageAllocSize xsi:type="xsd:long">32

 </StorageAllocSize>

 <StorageUsedSize xsi:type="xsd:long">10

 </StorageUsedSize>

 <SegmentNeedsResizing xsi:type="xsd:boolean">

 false</SegmentNeedsResizing>

 </Properties>

 </XMObject>

 </Member>

 <Member>

 <Name>SubCompression</Name>

 <XMObject class="XMRENoSplitCompressionInfo<2>"

 ProviderVersion="0">

 <Properties> Pr
el
im

in
ar

y

216 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <Min xsi:type="xsd:int">3</Min>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 </Member>

 <Member>

 <Name>ColumnSegmentStats</Name>

 <XMObject class="XMColumnSegmentStats" ProviderVersion="0">

 <Properties>

 <DistinctStates xsi:type="xsd:long">0</DistinctStates>

 <MinDataID xsi:type="xsd:int">3</MinDataID>

 <MaxDataID xsi:type="xsd:int">6</MaxDataID>

 <OriginalMinSegmentDataID xsi:type="xsd:int">2

 </OriginalMinSegmentDataID>

 <RLESortOrder xsi:type="xsd:long">-1</RLESortOrder>

 <RowCount xsi:type="xsd:long">1048576</RowCount>

 <HasNulls xsi:type="xsd:boolean">false</HasNulls>

 <RLERuns xsi:type="xsd:long">4</RLERuns>

 <OthersRLERuns xsi:type="xsd:long">0</OthersRLERuns>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 <XMObject class="XMColumnSegment" ProviderVersion="0">

 <Properties>

 <Records xsi:type="xsd:long">1048576</Records>

 <Mask xsi:type="xsd:long">1</Mask>

 </Properties>

 <Members>

 <Member>

 <Name>SubSegment</Name>

 <XMObject class="XMColumnSegment"

 ProviderVersion="0">

 <Properties>

 <Records xsi:type="xsd:long">0</Records>

 <Mask xsi:type="xsd:long">0</Mask>

 </Properties>

 <Members>

 <Member>

 <Name>CompressionInfo</Name>

 <XMObject class="XMRENoSplitCompressionInfo<2>"

 ProviderVersion="0">

 <Properties>

 <Min xsi:type="xsd:int">3</Min>

 </Properties>

 </XMObject>

 </Member>

 <Member>

 <Name>ColumnSegmentStats</Name>

 <XMObject class="XMColumnSegmentStats"

 ProviderVersion="0">

 <Properties>

 <DistinctStates xsi:type="xsd:long">0

 </DistinctStates>

 <MinDataID xsi:type="xsd:int">2</MinDataID>

 <MaxDataID xsi:type="xsd:int">2</MaxDataID> Pr
el
im

in
ar

y

217 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <OriginalMinSegmentDataID xsi:type="xsd:int">2

 </OriginalMinSegmentDataID>

 <RLESortOrder xsi:type="xsd:long">-1

 </RLESortOrder>

 <RowCount xsi:type="xsd:long">0</RowCount>

 <HasNulls xsi:type="xsd:boolean">false

 </HasNulls>

 <RLERuns xsi:type="xsd:long">0</RLERuns>

 <OthersRLERuns xsi:type="xsd:long">0

 </OthersRLERuns>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 </Member>

 <Member>

 <Name>CompressionInfo</Name>

 <XMObject class=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<2>>"

 ProviderVersion="0">

 <Members>

 <Member>

 <Name>RLECompression</Name>

 <XMObject class="XMRLECompressionInfo"

 ProviderVersion="0">

 <Properties>

 <BookmarkBits xsi:type="xsd:long">14

 </BookmarkBits>

 <StorageAllocSize xsi:type="xsd:long">32

 </StorageAllocSize>

 <StorageUsedSize xsi:type="xsd:long">10

 </StorageUsedSize>

 <SegmentNeedsResizing xsi:type="xsd:boolean">

 false</SegmentNeedsResizing>

 </Properties>

 </XMObject>

 </Member>

 <Member>

 <Name>SubCompression</Name>

 <XMObject class="XMRENoSplitCompressionInfo<2>"

 ProviderVersion="0">

 <Properties>

 <Min xsi:type="xsd:int">3</Min>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 </Member>

 <Member>

 <Name>ColumnSegmentStats</Name>

 <XMObject class="XMColumnSegmentStats"

 ProviderVersion="0">

 <Properties>

 <DistinctStates xsi:type="xsd:long">0

 </DistinctStates>

 <MinDataID xsi:type="xsd:int">3</MinDataID>

 <MaxDataID xsi:type="xsd:int">6</MaxDataID> Pr
el
im

in
ar

y

218 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 <OriginalMinSegmentDataID xsi:type="xsd:int">2

 </OriginalMinSegmentDataID>

 <RLESortOrder xsi:type="xsd:long">-1</RLESortOrder>

 <RowCount xsi:type="xsd:long">1048576</RowCount>

 <HasNulls xsi:type="xsd:boolean">false</HasNulls>

 <RLERuns xsi:type="xsd:long">4</RLERuns>

 <OthersRLERuns xsi:type="xsd:long">0</OthersRLERuns>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 <XMObject class="XMColumnSegment" ProviderVersion="0">

 <Properties>

 <Records xsi:type="xsd:long">4104</Records>

 <Mask xsi:type="xsd:long">1</Mask>

 </Properties>

 <Members>

 <Member>

 <Name>SubSegment</Name>

 <XMObject class="XMColumnSegment" ProviderVersion="0">

 <Properties>

 <Records xsi:type="xsd:long">8</Records>

 <Mask xsi:type="xsd:long">0</Mask>

 </Properties>

 <Members>

 <Member>

 <Name>CompressionInfo</Name>

 <XMObject class="XMRENoSplitCompressionInfo<3>"

 ProviderVersion="0">

 <Properties>

 <Min xsi:type="xsd:int">3</Min>

 </Properties>

 </XMObject>

 </Member>

 <Member>

 <Name>ColumnSegmentStats</Name>

 <XMObject class="XMColumnSegmentStats"

 ProviderVersion="0">

 <Properties>

 <DistinctStates xsi:type="xsd:long">0

 </DistinctStates>

 <MinDataID xsi:type="xsd:int">2</MinDataID>

 <MaxDataID xsi:type="xsd:int">2</MaxDataID>

 <OriginalMinSegmentDataID xsi:type="xsd:int">

 2</OriginalMinSegmentDataID>

 <RLESortOrder xsi:type="xsd:long">-1

 </RLESortOrder>

 <RowCount xsi:type="xsd:long">0</RowCount>

 <HasNulls xsi:type="xsd:boolean">false

 </HasNulls>

 <RLERuns xsi:type="xsd:long">0</RLERuns>

 <OthersRLERuns xsi:type="xsd:long">0

 </OthersRLERuns>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject> Pr
el
im

in
ar

y

219 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 </Member>

 <Member>

 <Name>CompressionInfo</Name>

 <XMObject class=

 "XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<3>>"

 ProviderVersion="0">

 <Members>

 <Member>

 <Name>RLECompression</Name>

 <XMObject class="XMRLECompressionInfo"

 ProviderVersion="0">

 <Properties>

 <BookmarkBits xsi:type="xsd:long">6

 </BookmarkBits>

 <StorageAllocSize xsi:type="xsd:long">32

 </StorageAllocSize>

 <StorageUsedSize xsi:type="xsd:long">12

 </StorageUsedSize>

 <SegmentNeedsResizing xsi:type="xsd:boolean">

 false</SegmentNeedsResizing>

 </Properties>

 </XMObject>

 </Member>

 <Member>

 <Name>SubCompression</Name>

 <XMObject class="XMRENoSplitCompressionInfo<3>"

 ProviderVersion="0">

 <Properties>

 <Min xsi:type="xsd:int">3</Min>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 </Member>

 <Member>

 <Name>ColumnSegmentStats</Name>

 <XMObject class="XMColumnSegmentStats" ProviderVersion="0">

 <Properties>

 <DistinctStates xsi:type="xsd:long">0</DistinctStates>

 <MinDataID xsi:type="xsd:int">3</MinDataID>

 <MaxDataID xsi:type="xsd:int">10</MaxDataID>

 <OriginalMinSegmentDataID xsi:type="xsd:int">2

 </OriginalMinSegmentDataID>

 <RLESortOrder xsi:type="xsd:long">-1</RLESortOrder>

 <RowCount xsi:type="xsd:long">4104</RowCount>

 <HasNulls xsi:type="xsd:boolean">false</HasNulls>

 <RLERuns xsi:type="xsd:long">4</RLERuns>

 <OthersRLERuns xsi:type="xsd:long">1</OthersRLERuns>

 </Properties>

 </XMObject>

 </Member>

 </Members>

 </XMObject>

 </Collection>

 </Collections>

 <DataObjects>

 <DataObject>

 <XMObject class="XMHashDataDictionary<XM_Long>" name= Pr
el
im

in
ar

y

220 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

 "1.Table_1_51adc096-9274-4394-b47d-a2fcabfbc1de.Column_1.dictionary"

 ProviderVersion="0">

 <Properties>

 <DataVersion xsi:type="xsd:int">1</DataVersion>

 <LastId xsi:type="xsd:int">10</LastId>

 <Nullable xsi:type="xsd:boolean">false</Nullable>

 <Unique xsi:type="xsd:boolean">false</Unique>

 <OperatingOn32 xsi:type="xsd:boolean">true</OperatingOn32>

 </Properties>

 </XMObject>

 </DataObject>

 <DataObject>

 <XMObject class="XMRawColumnPartitionDataObject" name=

 "1.Table_1_51adc096-9274-4394-b47d-a2fcabfbc1de.Column_1.0.idf"

 ProviderVersion="0">

 <Properties>

 <DataVersion xsi:type="xsd:int">1</DataVersion>

 <Partition xsi:type="xsd:int">0</Partition>

 <SegmentCount xsi:type="xsd:int">3</SegmentCount>

 </Properties>

 </XMObject>

 </DataObject>

 </DataObjects>

 </XMObject>

 </Collection>

 <Collection>

 <Name>Relationships</Name>

 </Collection>

 <Collection>

 <Name>UserHierarchies</Name>

 </Collection>

 </Collections>

</XMObject>

3.2 Multiple-Segment Column Data .idf File

This example shows a hexadecimal dump of the column data .idf file (section 2.3.1.1) that
corresponds to the metadata contained in section 3.1.

In the metadata, the XMRawColumn object has a Segments collection with three

XMColumnSegment objects, so three segments have been created for this column. Six segments
actually exist in total because each segment has a subsegment. Because this is a column data .idf
file, the compression that is used is required to be XMHybridRLE compression (section 2.7.3). This
means that each segment has a subsegment member, and the class of the SubSegment XMObject
element provides the compression that is used for that segment. The SubCompression member of
the SubSegment object provides the minimum data identifier value in the segment. (For
information about interpreting the XML metadata, see section 2.5). In the metadata for this column,

the compression and minimum data identifier are as follows:

Segment 1 has XMHybridRLE using XMRENoSplit compression 2-bit (section 2.7.3.3) with a

minimum data identifier of 3.

Segment 2 has the same compression characteristics as Segment 1.

Segment 3 has XMHybridRLE using XMRENoSplit compression 3-bit (section 2.7.3.4) with

minimum data identifier of 3. Pr
el
im

in
ar

y

221 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

The preceding information enables the interpretation of binary contents of the column data .idf file.

The segment size indicator (section 2.3.1.1) exists at Byte 0x00 for the first segment, which is the

primary (RLE) segment for the hybrid compression (section 2.7.3). Because this is a hybrid
compression, a bit-packing subsegment also exists, even if that subsegment is empty.

The segment size indicator is an 8-byte value, so Bytes 0x00 through 0x07 represent the 8-byte
segment size indicator. In this example, it contains the value 0x10 (decimal 16), which indicates
that 16 units exist in the segment. This value does not include the segment size indicator. Each unit
is 8 bytes, so 128 bytes exist in the first (primary) segment. Therefore, this first segment runs from
Byte 0x08 through Byte 0x87. This segment contains a few RLE entries.

Following this primary (RLE) segment is the subsegment. The subsegment also has a segment size
indicator. This indicator exists in Bytes 0x88 through 0x8F. The value is 0x01 (decimal 1). A

subsegment, even if no bit-packed elements exist, needs to have at least one unit in the segment.
In Bytes 0x90 through 0x97, as indicated by the segment size, there is only one unit and it is zero.

The second segment (again, as required, composed of both the primary RLE segment and the bit-

packing subsegment) begins with a segment size indicator for the primary segment (Bytes 0x98
through 0x9F), which is followed by the primary RLE segment (Bytes 0xA0 through 0x11F), which is
then followed by the segment size indicator for the subsegment (Bytes 0x120 through 0x127),

which is finally followed by the subsegment (Bytes 0x128 through 0x12F). Again, this subsegment is
empty and therefore has the minimum required size of 1 unit.

The third segment (composed of both the primary RLE segment and the bit-packing subsegment)
begins with its primary segment size indicator (Bytes 0x130 through 0x137), which is followed by
the primary segment (Bytes 0x138 through 0x1B7), which is then followed by the subsegment
segment size indicator (Bytes 0x1B8 through 0x1BF), which is finally followed by the subsegment
(Bytes 0x1C0 through 0x1C7).

Unlike the previous combinations of RLE segments and bit-packing subsegments, this third set has
bit-packed values as well as RLE-compressed values. It will therefore be described in more detail.

The primary segment contains RLE entries and one bit-packing entry (section 2.7.3). The RLE

entries consist of two 4-byte values: a data value and a repeat value. The bit-packing entries are
also composed of two 4-byte values. The first value is a negated 1-based offset into the subsegment
data, and the second value is the count of the number of values that will follow in the subsegment.

The RLE entries are as follows and are referenced by their start bytes:

Byte 0x138, Byte 0x13C: (data value = 0x00000003, repeat value = 0x00000400)

Byte 0x140, Byte 0x144: (data value = 0x00000004, repeat value = 0x00000400)

Byte 0x148, Byte 0x14C: (data value = 0x00000005, repeat value = 0x00000400)

Byte 0x150, Byte 0x154: (data value = 0x00000006, repeat value = 0x00000400)

So the RLE entries are (3, 1024), (4, 1024), (5, 1024) and (6, 1024).

The bit-packing entry begins at Byte 0x158 and is easy to recognize because it is –1 (hexadecimal

0xFFFF). Following the negated 1-based offset is the count at Byte 0x15C. The count value is 0x08
(decimal 8). So, the subsegment contains 8 bit-packed values. In this case, these values are
compressed by using hybrid bit-packing compression XMRENoSplit 3-bit (section 2.7.3.4), so each
value is represented by 3 bits. The eight values therefore require 24 bits (3 bytes) in total. Bytes
0x1C0 through 0x1C2 contain the eight compressed values. Pr

el
im

in
ar

y

222 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Each compressed value needs to be decompressed and have the minimum value added back in, so
these bytes decompress to the sequence 7, 8, 9, 10, 9, 10, 9, 10.

The ColumnSegmentStats (see section 3.1 and section 2.5.2.54.1) for this third segment
(combination segment) indicates that 4104 rows (RowCount) ought to exist. Adding the RLE counts

and the 8 bit-packed values results in 4 × 1024 + 8, which equals 4104 data values that correspond
to the number of rows.

The metadata also shows that four RLE runs (RLERuns) and one other RLE run that is not a solid
run (OthersRLERuns) ought to exist. In this segment, four RLE entries and one bit-packing entry
(which is the other RLE run just mentioned) exist.

The value of MinDataID is 3, and the value of MaxDataID is 10, which correspond to the value of
3 in the first RLE entry and the 10 values in the decompressed bit-packed values (with a minimum

of 3 added back during the decompression).

The actual run of data values (from both the RLE segment and the bit-packing subsegment) includes
the values 3, 4, 5, 6, 7, 8, 9, and 10.

00000000 10 00 00 00 00 00 00 00-03 00 00 00 00 00 04 00

00000010 04 00 00 00 00 00 04 00-05 00 00 00 00 00 04 00

00000020 06 00 00 00 00 00 04 00-00 00 00 00 00 00 00 00

00000030 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00000040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00000050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00000060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00000070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00000080 00 00 00 00 00 00 00 00-01 00 00 00 00 00 00 00

00000090 00 00 00 00 00 00 00 00-10 00 00 00 00 00 00 00

000000A0 03 00 00 00 00 00 04 00-04 00 00 00 00 00 04 00

000000B0 05 00 00 00 00 00 04 00-06 00 00 00 00 00 04 00

000000C0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

000000D0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

000000E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

000000F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00000100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00000110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00000120 01 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00000130 10 00 00 00 00 00 00 00-03 00 00 00 00 04 00 00

00000140 04 00 00 00 00 04 00 00-05 00 00 00 00 04 00 00

00000150 06 00 00 00 00 04 00 00-FF FF FF FF 08 00 00 00

00000160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00000170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00000180 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00000190 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

000001A0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

000001B0 00 00 00 00 00 00 00 00-01 00 00 00 00 00 00 00

000001C0 AC EF FB 00 00 00 00 00-

3.3 Dictionary File

This example shows a hexadecimal dump that illustrates the contents of the dictionary file (section
2.3.2.1) corresponding to the data in the column that is shown in section 3.2.

In the metadata, the XMRawColumn object has a DataObjects collection. Within this collection is
a DataObject XMObject of class "XMHashDataDictionary<XM_Long>" (section 2.5.2.21).
Therefore, the dictionary is an integer dictionary. The XM_TYPE_LONG dictionary contains Pr

el
im

in
ar

y

223 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

integers. However, XM_TYPE_LONG dictionaries can contain either 32-bit integers or 64-bit
integers (section 2.3.2.1.1). The properties for this object show that the OperatingOn32 attribute

(section 2.5.2.21.1) is set to true. The dictionary therefore contains 32-bit integer values. The
metadata properties also show that the dictionary contains neither NULL values (Nullable is false)

nor unique values (Unique is false). Because the values are not guaranteed to be unique, hash
information is required to ensure that all the values in the dictionary can be retrieved.

In the binary file, the first 4 bytes (Bytes 0x00 through 0x03) indicate the dictionary type,
XM_TYPE. The value here is zero. In the XM_TYPE enumeration (section 2.3.2.1.3.1), zero
corresponds to the XM_TYPE_LONG dictionary. This confirms what the metadata has already
shown.

XM_TYPE_LONG dictionaries are required to have five hash elements (section 2.3.2.1.1.1). These

elements identify the hashing algorithm (section 2.3.3.1.4.2), the sizes of the HashBin (section
2.3.3.1.4.4) and HashEntry (section 2.3.3.1.4.5) structures, the local entry count (section
2.3.3.1.4.6), and the number of bins used in the hash. The number of bins value is set to
XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT, which is –1 (section 2.3.3.1.4.1).

Looking at the bytes shows that the hash algorithm (Bytes 0x04 through 0x07) is set to 0xFFFF
(decimal –1). This is as expected because –1 corresponds to the value of XM_INVALID, the

required setting for XM_TYPE_LONG dictionaries.

Moving to the next element (Bytes 08 through 0x0B) the HashEntry size is set to 8, which means
that the HashEntry structure is 8 bytes in size. Next (Bytes 0x0C through 0x0F) shows that the
HashBin size is set to 0x40 (decimal 64), which means that the HashBin structure is 64 bytes in
size.

The next set of bytes (Bytes 0x10 through 0x13) refers to the local entry count, which is the
number of hash entries that a hash bin can contain before an overflow (or collision) occurs. The

value is 6, so the hash bin (or bucket) can contain 6 HashEntry structures within the HashBin
structure before it needs to start adding collision entries to the chain pointer. For more information,
see section 2.3.3.1.4.4.

The last of the required hash elements is the number of bins. This value is set to

XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT. The next 8 bytes (Bytes 0x14 through 0x1B)
represent the bins value. The value is 0xFFFFFFFF (decimal –1). So, the bins value has been
properly set and indicates that no more hash information is included in the dictionary.

The rest of the bytes are related to the dictionary itself, not to the type or the hash.
XM_TYPE_LONG dictionaries contain just the type information, the required hash elements, and
vector of dictionary values. The latter are the actual dictionary items stored in a vector (or array)
and are not compressed. So, the next information is the element count and the element size for that
vector. The element count is 8 bytes in length. The element size is a 4-byte value. The element
count (Bytes 0x1C through 0x23) is 8, so 8 elements exist in the vector. The element size (Bytes

0x24 through 0x27) is 4, which means that each element in the vector is 4 bytes in size.

The vector of values can now be parsed. The values are as follows and are referenced by their start
bytes:

Byte 0x28: value = 0x00000001

Byte 0x2C: value = 0x00000002

Byte 0x30: value = 0x00000003

Byte 0x34: value = 0x00000004 Pr
el
im

in
ar

y

224 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Byte 0x38: value = 0x0000270F (decimal 9999)

Byte 0x3C: value = 0x0000270E (decimal 9998)

Byte 0x40: value = 0x0000270D (decimal 9997)

Byte 0x44: value = 0x0000270C (decimal 9996)

The vector of integer dictionary values therefore consists of the sequence 1, 2, 3, 4, 9999, 9998,
9997, 9996.

From this sequence, it is clear that no NULL values exist, as expected, but also that the dictionary
values are unique. No duplicates exist.

00000000 00 00 00 00 FF FF FF FF-08 00 00 00 40 00 00 00 @...

00000010 06 00 00 00 FF FF FF FF-FF FF FF FF 08 00 00 00

00000020 00 00 00 00 04 00 00 00-01 00 00 00 02 00 00 00

00000030 03 00 00 00 04 00 00 00-0F 27 00 00 0E 27 00 00 '...'..

00000040 0D 27 00 00 0C 27 00 00- .'...'..

Pr
el
im

in
ar

y

225 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

4 Security

4.1 Security Considerations for Implementers

The Spreadsheet Data Model file is compressed as a whole by means of Xpress compression (section

2.7.5). However, neither the entire Spreadsheet Data Model file nor any file contained within it is
encrypted. Therefore, to prevent data tampering in general, taking reasonable precautions to
prevent unauthorized access to any of the created Spreadsheet Data Model files is suggested.

Additionally, the file formats of the individual files contained within the Spreadsheet Data Model file
are sensitive to data tampering. Neither the XML files nor the hash index files (.hidx files), which are
also binary, are compressed. In fact, because all the compression algorithms that are used by the

files are documented, the data inside the binary files is just as exposed as the metadata in the XML
files. Even minor binary changes—whether benign or malicious—or malformed XML data can cause
file format read errors, data corruption or alteration, and possibly undefined system behavior.

For example, various files within the Spreadsheet Data Model file use the .idf extension and have

the same file format (section 2.3.1.1). This file format, in particular, is highly dependent on the
segment size indicators being accurate. Inaccuracies could result in load errors or undefined
behavior.

As another example, various files and structures, including the overall file format layout of the
Spreadsheet Data Model itself (section 2.1), follow particular memory alignment rules. These
alignment rules, as well as the specified byte sizes of different elements within the file formats, are
designed to be independent of the operating system environment. This design could result in the
padding of structures or file format elements. As a result, file and structure sizes can vary. If the
files or structures do not correctly adhere to these alignment rules, load errors or undefined
behavior can result.

In addition to the protection of data sources and data integrity, strict adherence to this specification
is thus crucial to prevent read or run-time errors.

The actual data that is saved in the Spreadsheet Data Model can change over time. This
changeability refers not just to the original data that is processed and saved in various ways within
the Spreadsheet Data Model file but also to how that data is processed by the system. The result is
that the number and type of files being saved, as well as the particular data that is saved in each

file, can change. Again, such changes need to be expected, and proper security procedures for file
protection are recommended to differentiate between a valid file that has changed and an invalid file
that has been tampered with.

The CryptKey.bin file (section 2.1.2.4) contains the key BLOB that is needed to decrypt and encrypt
the password and connection strings for the Spreadsheet Data Model. This key BLOB is in its original
form. Because the key is exposed in this manner, care needs to be taken to ensure that a strong
key—in other words, one that is not easily broken—is used.

4.2 Index of Security Parameters

Security parameter Section

The ConnectionString property 2.1.2.1.1

The SvrEncryptPwdFlag property 2.1.2.3.1

The CryptKey.bin file 2.1.2.4 Pr
el
im

in
ar

y

226 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

Security parameter Section

The QueryImpersonationInfo property, as described in [MS-SSAS] section 2.2.4.2.2.6 2.6.2

The ConnectionStringSecurity property, as described in [MS-SSAS] section 2.2.4.2.2.6 2.6.2

The ConnectionString property, as described in [MS-SSAS] section 2.2.4.2.2.6 2.6.2

The QueryImpersonationInfo property, as described in [MS-SSAS] section 2.2.4.2.2.6 2.6.2

The DataSourceImpersonationInfo property, as described in [MS-SSAS] section
2.2.4.2.2.5

2.6.4

Pr
el
im

in
ar

y

%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf
%5bMS-SSAS%5d.pdf

227 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

5 Appendix A: Compression Mask for XMRENoSplit Compression

Algorithms

The following single-dimension array contains hexadecimal values that are used in XMRENoSplit
compression algorithms:

const maskArray[]=

{

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFFFFFE, 0xFFFFFFFFFFFFFFFD, 0xFFFFFFFFFFFFFFFB, 0xFFFFFFFFFFFFFFF7,

0xFFFFFFFFFFFFFFEF, 0xFFFFFFFFFFFFFFDF, 0xFFFFFFFFFFFFFFBF, 0xFFFFFFFFFFFFFF7F,

0xFFFFFFFFFFFFFEFF, 0xFFFFFFFFFFFFFDFF, 0xFFFFFFFFFFFFFBFF, 0xFFFFFFFFFFFFF7FF,

0xFFFFFFFFFFFFEFFF, 0xFFFFFFFFFFFFDFFF, 0xFFFFFFFFFFFFBFFF, 0xFFFFFFFFFFFF7FFF,

0xFFFFFFFFFFFEFFFF, 0xFFFFFFFFFFFDFFFF, 0xFFFFFFFFFFFBFFFF, 0xFFFFFFFFFFF7FFFF,

0xFFFFFFFFFFEFFFFF, 0xFFFFFFFFFFDFFFFF, 0xFFFFFFFFFFBFFFFF, 0xFFFFFFFFFF7FFFFF,

0xFFFFFFFFFEFFFFFF, 0xFFFFFFFFFDFFFFFF, 0xFFFFFFFFFBFFFFFF, 0xFFFFFFFFF7FFFFFF,

0xFFFFFFFFEFFFFFFF, 0xFFFFFFFFDFFFFFFF, 0xFFFFFFFFBFFFFFFF, 0xFFFFFFFF7FFFFFFF,

0xFFFFFFFEFFFFFFFF, 0xFFFFFFFDFFFFFFFF, 0xFFFFFFFBFFFFFFFF, 0xFFFFFFF7FFFFFFFF,

0xFFFFFFEFFFFFFFFF, 0xFFFFFFDFFFFFFFFF, 0xFFFFFFBFFFFFFFFF, 0xFFFFFF7FFFFFFFFF,

0xFFFFFEFFFFFFFFFF, 0xFFFFFDFFFFFFFFFF, 0xFFFFFBFFFFFFFFFF, 0xFFFFF7FFFFFFFFFF,

0xFFFFEFFFFFFFFFFF, 0xFFFFDFFFFFFFFFFF, 0xFFFFBFFFFFFFFFFF, 0xFFFF7FFFFFFFFFFF,

0xFFFEFFFFFFFFFFFF, 0xFFFDFFFFFFFFFFFF, 0xFFFBFFFFFFFFFFFF, 0xFFF7FFFFFFFFFFFF,

0xFFEFFFFFFFFFFFFF, 0xFFDFFFFFFFFFFFFF, 0xFFBFFFFFFFFFFFFF, 0xFF7FFFFFFFFFFFFF,

0xFEFFFFFFFFFFFFFF, 0xFDFFFFFFFFFFFFFF, 0xFBFFFFFFFFFFFFFF, 0xF7FFFFFFFFFFFFFF,

0xEFFFFFFFFFFFFFFF, 0xDFFFFFFFFFFFFFFF, 0xBFFFFFFFFFFFFFFF, 0x7FFFFFFFFFFFFFFF,

0xFFFFFFFFFFFFFFFC, 0xFFFFFFFFFFFFFFF9, 0xFFFFFFFFFFFFFFF3, 0xFFFFFFFFFFFFFFE7,

0xFFFFFFFFFFFFFFCF, 0xFFFFFFFFFFFFFF9F, 0xFFFFFFFFFFFFFF3F, 0xFFFFFFFFFFFFFE7F,

0xFFFFFFFFFFFFFCFF, 0xFFFFFFFFFFFFF9FF, 0xFFFFFFFFFFFFF3FF, 0xFFFFFFFFFFFFE7FF,

0xFFFFFFFFFFFFCFFF, 0xFFFFFFFFFFFF9FFF, 0xFFFFFFFFFFFF3FFF, 0xFFFFFFFFFFFE7FFF,

0xFFFFFFFFFFFCFFFF, 0xFFFFFFFFFFF9FFFF, 0xFFFFFFFFFFF3FFFF, 0xFFFFFFFFFFE7FFFF,

0xFFFFFFFFFFCFFFFF, 0xFFFFFFFFFF9FFFFF, 0xFFFFFFFFFF3FFFFF, 0xFFFFFFFFFE7FFFFF,

0xFFFFFFFFFCFFFFFF, 0xFFFFFFFFF9FFFFFF, 0xFFFFFFFFF3FFFFFF, 0xFFFFFFFFE7FFFFFF,

0xFFFFFFFFCFFFFFFF, 0xFFFFFFFF9FFFFFFF, 0xFFFFFFFF3FFFFFFF, 0xFFFFFFFE7FFFFFFF,

0xFFFFFFFCFFFFFFFF, 0xFFFFFFF9FFFFFFFF, 0xFFFFFFF3FFFFFFFF, 0xFFFFFFE7FFFFFFFF,

0xFFFFFFCFFFFFFFFF, 0xFFFFFF9FFFFFFFFF, 0xFFFFFF3FFFFFFFFF, 0xFFFFFE7FFFFFFFFF,

0xFFFFFCFFFFFFFFFF, 0xFFFFF9FFFFFFFFFF, 0xFFFFF3FFFFFFFFFF, 0xFFFFE7FFFFFFFFFF,

0xFFFFCFFFFFFFFFFF, 0xFFFF9FFFFFFFFFFF, 0xFFFF3FFFFFFFFFFF, 0xFFFE7FFFFFFFFFFF,

0xFFFCFFFFFFFFFFFF, 0xFFF9FFFFFFFFFFFF, 0xFFF3FFFFFFFFFFFF, 0xFFE7FFFFFFFFFFFF,

0xFFCFFFFFFFFFFFFF, 0xFF9FFFFFFFFFFFFF, 0xFF3FFFFFFFFFFFFF, 0xFE7FFFFFFFFFFFFF,

0xFCFFFFFFFFFFFFFF, 0xF9FFFFFFFFFFFFFF, 0xF3FFFFFFFFFFFFFF, 0xE7FFFFFFFFFFFFFF,

0xCFFFFFFFFFFFFFFF, 0x9FFFFFFFFFFFFFFF, 0x3FFFFFFFFFFFFFFF, 0x0000000000000000,

0xFFFFFFFFFFFFFFF8, 0xFFFFFFFFFFFFFFF1, 0xFFFFFFFFFFFFFFE3, 0xFFFFFFFFFFFFFFC7,

0xFFFFFFFFFFFFFF8F, 0xFFFFFFFFFFFFFF1F, 0xFFFFFFFFFFFFFE3F, 0xFFFFFFFFFFFFFC7F,

0xFFFFFFFFFFFFF8FF, 0xFFFFFFFFFFFFF1FF, 0xFFFFFFFFFFFFE3FF, 0xFFFFFFFFFFFFC7FF,

0xFFFFFFFFFFFF8FFF, 0xFFFFFFFFFFFF1FFF, 0xFFFFFFFFFFFE3FFF, 0xFFFFFFFFFFFC7FFF,

0xFFFFFFFFFFF8FFFF, 0xFFFFFFFFFFF1FFFF, 0xFFFFFFFFFFE3FFFF, 0xFFFFFFFFFFC7FFFF,

0xFFFFFFFFFF8FFFFF, 0xFFFFFFFFFF1FFFFF, 0xFFFFFFFFFE3FFFFF, 0xFFFFFFFFFC7FFFFF, Pr
el
im

in
ar

y

228 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0xFFFFFFFFF8FFFFFF, 0xFFFFFFFFF1FFFFFF, 0xFFFFFFFFE3FFFFFF, 0xFFFFFFFFC7FFFFFF,

0xFFFFFFFF8FFFFFFF, 0xFFFFFFFF1FFFFFFF, 0xFFFFFFFE3FFFFFFF, 0xFFFFFFFC7FFFFFFF,

0xFFFFFFF8FFFFFFFF, 0xFFFFFFF1FFFFFFFF, 0xFFFFFFE3FFFFFFFF, 0xFFFFFFC7FFFFFFFF,

0xFFFFFF8FFFFFFFFF, 0xFFFFFF1FFFFFFFFF, 0xFFFFFE3FFFFFFFFF, 0xFFFFFC7FFFFFFFFF,

0xFFFFF8FFFFFFFFFF, 0xFFFFF1FFFFFFFFFF, 0xFFFFE3FFFFFFFFFF, 0xFFFFC7FFFFFFFFFF,

0xFFFF8FFFFFFFFFFF, 0xFFFF1FFFFFFFFFFF, 0xFFFE3FFFFFFFFFFF, 0xFFFC7FFFFFFFFFFF,

0xFFF8FFFFFFFFFFFF, 0xFFF1FFFFFFFFFFFF, 0xFFE3FFFFFFFFFFFF, 0xFFC7FFFFFFFFFFFF,

0xFF8FFFFFFFFFFFFF, 0xFF1FFFFFFFFFFFFF, 0xFE3FFFFFFFFFFFFF, 0xFC7FFFFFFFFFFFFF,

0xF8FFFFFFFFFFFFFF, 0xF1FFFFFFFFFFFFFF, 0xE3FFFFFFFFFFFFFF, 0xC7FFFFFFFFFFFFFF,

0x8FFFFFFFFFFFFFFF, 0x1FFFFFFFFFFFFFFF, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFFFFF0, 0xFFFFFFFFFFFFFFE1, 0xFFFFFFFFFFFFFFC3, 0xFFFFFFFFFFFFFF87,

0xFFFFFFFFFFFFFF0F, 0xFFFFFFFFFFFFFE1F, 0xFFFFFFFFFFFFFC3F, 0xFFFFFFFFFFFFF87F,

0xFFFFFFFFFFFFF0FF, 0xFFFFFFFFFFFFE1FF, 0xFFFFFFFFFFFFC3FF, 0xFFFFFFFFFFFF87FF,

0xFFFFFFFFFFFF0FFF, 0xFFFFFFFFFFFE1FFF, 0xFFFFFFFFFFFC3FFF, 0xFFFFFFFFFFF87FFF,

0xFFFFFFFFFFF0FFFF, 0xFFFFFFFFFFE1FFFF, 0xFFFFFFFFFFC3FFFF, 0xFFFFFFFFFF87FFFF,

0xFFFFFFFFFF0FFFFF, 0xFFFFFFFFFE1FFFFF, 0xFFFFFFFFFC3FFFFF, 0xFFFFFFFFF87FFFFF,

0xFFFFFFFFF0FFFFFF, 0xFFFFFFFFE1FFFFFF, 0xFFFFFFFFC3FFFFFF, 0xFFFFFFFF87FFFFFF,

0xFFFFFFFF0FFFFFFF, 0xFFFFFFFE1FFFFFFF, 0xFFFFFFFC3FFFFFFF, 0xFFFFFFF87FFFFFFF,

0xFFFFFFF0FFFFFFFF, 0xFFFFFFE1FFFFFFFF, 0xFFFFFFC3FFFFFFFF, 0xFFFFFF87FFFFFFFF,

0xFFFFFF0FFFFFFFFF, 0xFFFFFE1FFFFFFFFF, 0xFFFFFC3FFFFFFFFF, 0xFFFFF87FFFFFFFFF,

0xFFFFF0FFFFFFFFFF, 0xFFFFE1FFFFFFFFFF, 0xFFFFC3FFFFFFFFFF, 0xFFFF87FFFFFFFFFF,

0xFFFF0FFFFFFFFFFF, 0xFFFE1FFFFFFFFFFF, 0xFFFC3FFFFFFFFFFF, 0xFFF87FFFFFFFFFFF,

0xFFF0FFFFFFFFFFFF, 0xFFE1FFFFFFFFFFFF, 0xFFC3FFFFFFFFFFFF, 0xFF87FFFFFFFFFFFF,

0xFF0FFFFFFFFFFFFF, 0xFE1FFFFFFFFFFFFF, 0xFC3FFFFFFFFFFFFF, 0xF87FFFFFFFFFFFFF,

0xF0FFFFFFFFFFFFFF, 0xE1FFFFFFFFFFFFFF, 0xC3FFFFFFFFFFFFFF, 0x87FFFFFFFFFFFFFF,

0x0FFFFFFFFFFFFFFF, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFFFFE0, 0xFFFFFFFFFFFFFFC1, 0xFFFFFFFFFFFFFF83, 0xFFFFFFFFFFFFFF07,

0xFFFFFFFFFFFFFE0F, 0xFFFFFFFFFFFFFC1F, 0xFFFFFFFFFFFFF83F, 0xFFFFFFFFFFFFF07F,

0xFFFFFFFFFFFFE0FF, 0xFFFFFFFFFFFFC1FF, 0xFFFFFFFFFFFF83FF, 0xFFFFFFFFFFFF07FF,

0xFFFFFFFFFFFE0FFF, 0xFFFFFFFFFFFC1FFF, 0xFFFFFFFFFFF83FFF, 0xFFFFFFFFFFF07FFF,

0xFFFFFFFFFFE0FFFF, 0xFFFFFFFFFFC1FFFF, 0xFFFFFFFFFF83FFFF, 0xFFFFFFFFFF07FFFF,

0xFFFFFFFFFE0FFFFF, 0xFFFFFFFFFC1FFFFF, 0xFFFFFFFFF83FFFFF, 0xFFFFFFFFF07FFFFF,

0xFFFFFFFFE0FFFFFF, 0xFFFFFFFFC1FFFFFF, 0xFFFFFFFF83FFFFFF, 0xFFFFFFFF07FFFFFF,

0xFFFFFFFE0FFFFFFF, 0xFFFFFFFC1FFFFFFF, 0xFFFFFFF83FFFFFFF, 0xFFFFFFF07FFFFFFF,

0xFFFFFFE0FFFFFFFF, 0xFFFFFFC1FFFFFFFF, 0xFFFFFF83FFFFFFFF, 0xFFFFFF07FFFFFFFF,

0xFFFFFE0FFFFFFFFF, 0xFFFFFC1FFFFFFFFF, 0xFFFFF83FFFFFFFFF, 0xFFFFF07FFFFFFFFF,

0xFFFFE0FFFFFFFFFF, 0xFFFFC1FFFFFFFFFF, 0xFFFF83FFFFFFFFFF, 0xFFFF07FFFFFFFFFF,

0xFFFE0FFFFFFFFFFF, 0xFFFC1FFFFFFFFFFF, 0xFFF83FFFFFFFFFFF, 0xFFF07FFFFFFFFFFF,

0xFFE0FFFFFFFFFFFF, 0xFFC1FFFFFFFFFFFF, 0xFF83FFFFFFFFFFFF, 0xFF07FFFFFFFFFFFF,

0xFE0FFFFFFFFFFFFF, 0xFC1FFFFFFFFFFFFF, 0xF83FFFFFFFFFFFFF, 0xF07FFFFFFFFFFFFF,

0xE0FFFFFFFFFFFFFF, 0xC1FFFFFFFFFFFFFF, 0x83FFFFFFFFFFFFFF, 0x07FFFFFFFFFFFFFF,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFFFFC0, 0xFFFFFFFFFFFFFF81, 0xFFFFFFFFFFFFFF03, 0xFFFFFFFFFFFFFE07,

0xFFFFFFFFFFFFFC0F, 0xFFFFFFFFFFFFF81F, 0xFFFFFFFFFFFFF03F, 0xFFFFFFFFFFFFE07F,

0xFFFFFFFFFFFFC0FF, 0xFFFFFFFFFFFF81FF, 0xFFFFFFFFFFFF03FF, 0xFFFFFFFFFFFE07FF,

0xFFFFFFFFFFFC0FFF, 0xFFFFFFFFFFF81FFF, 0xFFFFFFFFFFF03FFF, 0xFFFFFFFFFFE07FFF,

0xFFFFFFFFFFC0FFFF, 0xFFFFFFFFFF81FFFF, 0xFFFFFFFFFF03FFFF, 0xFFFFFFFFFE07FFFF,

0xFFFFFFFFFC0FFFFF, 0xFFFFFFFFF81FFFFF, 0xFFFFFFFFF03FFFFF, 0xFFFFFFFFE07FFFFF,

0xFFFFFFFFC0FFFFFF, 0xFFFFFFFF81FFFFFF, 0xFFFFFFFF03FFFFFF, 0xFFFFFFFE07FFFFFF,

0xFFFFFFFC0FFFFFFF, 0xFFFFFFF81FFFFFFF, 0xFFFFFFF03FFFFFFF, 0xFFFFFFE07FFFFFFF,

0xFFFFFFC0FFFFFFFF, 0xFFFFFF81FFFFFFFF, 0xFFFFFF03FFFFFFFF, 0xFFFFFE07FFFFFFFF,

0xFFFFFC0FFFFFFFFF, 0xFFFFF81FFFFFFFFF, 0xFFFFF03FFFFFFFFF, 0xFFFFE07FFFFFFFFF,

0xFFFFC0FFFFFFFFFF, 0xFFFF81FFFFFFFFFF, 0xFFFF03FFFFFFFFFF, 0xFFFE07FFFFFFFFFF,

0xFFFC0FFFFFFFFFFF, 0xFFF81FFFFFFFFFFF, 0xFFF03FFFFFFFFFFF, 0xFFE07FFFFFFFFFFF,

0xFFC0FFFFFFFFFFFF, 0xFF81FFFFFFFFFFFF, 0xFF03FFFFFFFFFFFF, 0xFE07FFFFFFFFFFFF,

0xFC0FFFFFFFFFFFFF, 0xF81FFFFFFFFFFFFF, 0xF03FFFFFFFFFFFFF, 0xE07FFFFFFFFFFFFF,

0xC0FFFFFFFFFFFFFF, 0x81FFFFFFFFFFFFFF, 0x03FFFFFFFFFFFFFF, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFF01, 0xFFFFFFFFFFFFFE03, 0xFFFFFFFFFFFFFC07,

0xFFFFFFFFFFFFF80F, 0xFFFFFFFFFFFFF01F, 0xFFFFFFFFFFFFE03F, 0xFFFFFFFFFFFFC07F,

0xFFFFFFFFFFFF80FF, 0xFFFFFFFFFFFF01FF, 0xFFFFFFFFFFFE03FF, 0xFFFFFFFFFFFC07FF,

0xFFFFFFFFFFF80FFF, 0xFFFFFFFFFFF01FFF, 0xFFFFFFFFFFE03FFF, 0xFFFFFFFFFFC07FFF,

0xFFFFFFFFFF80FFFF, 0xFFFFFFFFFF01FFFF, 0xFFFFFFFFFE03FFFF, 0xFFFFFFFFFC07FFFF,

0xFFFFFFFFF80FFFFF, 0xFFFFFFFFF01FFFFF, 0xFFFFFFFFE03FFFFF, 0xFFFFFFFFC07FFFFF,

0xFFFFFFFF80FFFFFF, 0xFFFFFFFF01FFFFFF, 0xFFFFFFFE03FFFFFF, 0xFFFFFFFC07FFFFFF,

0xFFFFFFF80FFFFFFF, 0xFFFFFFF01FFFFFFF, 0xFFFFFFE03FFFFFFF, 0xFFFFFFC07FFFFFFF, Pr
el
im

in
ar

y

229 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0xFFFFFF80FFFFFFFF, 0xFFFFFF01FFFFFFFF, 0xFFFFFE03FFFFFFFF, 0xFFFFFC07FFFFFFFF,

0xFFFFF80FFFFFFFFF, 0xFFFFF01FFFFFFFFF, 0xFFFFE03FFFFFFFFF, 0xFFFFC07FFFFFFFFF,

0xFFFF80FFFFFFFFFF, 0xFFFF01FFFFFFFFFF, 0xFFFE03FFFFFFFFFF, 0xFFFC07FFFFFFFFFF,

0xFFF80FFFFFFFFFFF, 0xFFF01FFFFFFFFFFF, 0xFFE03FFFFFFFFFFF, 0xFFC07FFFFFFFFFFF,

0xFF80FFFFFFFFFFFF, 0xFF01FFFFFFFFFFFF, 0xFE03FFFFFFFFFFFF, 0xFC07FFFFFFFFFFFF,

0xF80FFFFFFFFFFFFF, 0xF01FFFFFFFFFFFFF, 0xE03FFFFFFFFFFFFF, 0xC07FFFFFFFFFFFFF,

0x80FFFFFFFFFFFFFF, 0x01FFFFFFFFFFFFFF, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFFFF00, 0xFFFFFFFFFFFFFE01, 0xFFFFFFFFFFFFFC03, 0xFFFFFFFFFFFFF807,

0xFFFFFFFFFFFFF00F, 0xFFFFFFFFFFFFE01F, 0xFFFFFFFFFFFFC03F, 0xFFFFFFFFFFFF807F,

0xFFFFFFFFFFFF00FF, 0xFFFFFFFFFFFE01FF, 0xFFFFFFFFFFFC03FF, 0xFFFFFFFFFFF807FF,

0xFFFFFFFFFFF00FFF, 0xFFFFFFFFFFE01FFF, 0xFFFFFFFFFFC03FFF, 0xFFFFFFFFFF807FFF,

0xFFFFFFFFFF00FFFF, 0xFFFFFFFFFE01FFFF, 0xFFFFFFFFFC03FFFF, 0xFFFFFFFFF807FFFF,

0xFFFFFFFFF00FFFFF, 0xFFFFFFFFE01FFFFF, 0xFFFFFFFFC03FFFFF, 0xFFFFFFFF807FFFFF,

0xFFFFFFFF00FFFFFF, 0xFFFFFFFE01FFFFFF, 0xFFFFFFFC03FFFFFF, 0xFFFFFFF807FFFFFF,

0xFFFFFFF00FFFFFFF, 0xFFFFFFE01FFFFFFF, 0xFFFFFFC03FFFFFFF, 0xFFFFFF807FFFFFFF,

0xFFFFFF00FFFFFFFF, 0xFFFFFE01FFFFFFFF, 0xFFFFFC03FFFFFFFF, 0xFFFFF807FFFFFFFF,

0xFFFFF00FFFFFFFFF, 0xFFFFE01FFFFFFFFF, 0xFFFFC03FFFFFFFFF, 0xFFFF807FFFFFFFFF,

0xFFFF00FFFFFFFFFF, 0xFFFE01FFFFFFFFFF, 0xFFFC03FFFFFFFFFF, 0xFFF807FFFFFFFFFF,

0xFFF00FFFFFFFFFFF, 0xFFE01FFFFFFFFFFF, 0xFFC03FFFFFFFFFFF, 0xFF807FFFFFFFFFFF,

0xFF00FFFFFFFFFFFF, 0xFE01FFFFFFFFFFFF, 0xFC03FFFFFFFFFFFF, 0xF807FFFFFFFFFFFF,

0xF00FFFFFFFFFFFFF, 0xE01FFFFFFFFFFFFF, 0xC03FFFFFFFFFFFFF, 0x807FFFFFFFFFFFFF,

0x00FFFFFFFFFFFFFF, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFFFE00, 0xFFFFFFFFFFFFFC01, 0xFFFFFFFFFFFFF803, 0xFFFFFFFFFFFFF007,

0xFFFFFFFFFFFFE00F, 0xFFFFFFFFFFFFC01F, 0xFFFFFFFFFFFF803F, 0xFFFFFFFFFFFF007F,

0xFFFFFFFFFFFE00FF, 0xFFFFFFFFFFFC01FF, 0xFFFFFFFFFFF803FF, 0xFFFFFFFFFFF007FF,

0xFFFFFFFFFFE00FFF, 0xFFFFFFFFFFC01FFF, 0xFFFFFFFFFF803FFF, 0xFFFFFFFFFF007FFF,

0xFFFFFFFFFE00FFFF, 0xFFFFFFFFFC01FFFF, 0xFFFFFFFFF803FFFF, 0xFFFFFFFFF007FFFF,

0xFFFFFFFFE00FFFFF, 0xFFFFFFFFC01FFFFF, 0xFFFFFFFF803FFFFF, 0xFFFFFFFF007FFFFF,

0xFFFFFFFE00FFFFFF, 0xFFFFFFFC01FFFFFF, 0xFFFFFFF803FFFFFF, 0xFFFFFFF007FFFFFF,

0xFFFFFFE00FFFFFFF, 0xFFFFFFC01FFFFFFF, 0xFFFFFF803FFFFFFF, 0xFFFFFF007FFFFFFF,

0xFFFFFE00FFFFFFFF, 0xFFFFFC01FFFFFFFF, 0xFFFFF803FFFFFFFF, 0xFFFFF007FFFFFFFF,

0xFFFFE00FFFFFFFFF, 0xFFFFC01FFFFFFFFF, 0xFFFF803FFFFFFFFF, 0xFFFF007FFFFFFFFF,

0xFFFE00FFFFFFFFFF, 0xFFFC01FFFFFFFFFF, 0xFFF803FFFFFFFFFF, 0xFFF007FFFFFFFFFF,

0xFFE00FFFFFFFFFFF, 0xFFC01FFFFFFFFFFF, 0xFF803FFFFFFFFFFF, 0xFF007FFFFFFFFFFF,

0xFE00FFFFFFFFFFFF, 0xFC01FFFFFFFFFFFF, 0xF803FFFFFFFFFFFF, 0xF007FFFFFFFFFFFF,

0xE00FFFFFFFFFFFFF, 0xC01FFFFFFFFFFFFF, 0x803FFFFFFFFFFFFF, 0x007FFFFFFFFFFFFF,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFFFC00, 0xFFFFFFFFFFFFF801, 0xFFFFFFFFFFFFF003, 0xFFFFFFFFFFFFE007,

0xFFFFFFFFFFFFC00F, 0xFFFFFFFFFFFF801F, 0xFFFFFFFFFFFF003F, 0xFFFFFFFFFFFE007F,

0xFFFFFFFFFFFC00FF, 0xFFFFFFFFFFF801FF, 0xFFFFFFFFFFF003FF, 0xFFFFFFFFFFE007FF,

0xFFFFFFFFFFC00FFF, 0xFFFFFFFFFF801FFF, 0xFFFFFFFFFF003FFF, 0xFFFFFFFFFE007FFF,

0xFFFFFFFFFC00FFFF, 0xFFFFFFFFF801FFFF, 0xFFFFFFFFF003FFFF, 0xFFFFFFFFE007FFFF,

0xFFFFFFFFC00FFFFF, 0xFFFFFFFF801FFFFF, 0xFFFFFFFF003FFFFF, 0xFFFFFFFE007FFFFF,

0xFFFFFFFC00FFFFFF, 0xFFFFFFF801FFFFFF, 0xFFFFFFF003FFFFFF, 0xFFFFFFE007FFFFFF,

0xFFFFFFC00FFFFFFF, 0xFFFFFF801FFFFFFF, 0xFFFFFF003FFFFFFF, 0xFFFFFE007FFFFFFF,

0xFFFFFC00FFFFFFFF, 0xFFFFF801FFFFFFFF, 0xFFFFF003FFFFFFFF, 0xFFFFE007FFFFFFFF,

0xFFFFC00FFFFFFFFF, 0xFFFF801FFFFFFFFF, 0xFFFF003FFFFFFFFF, 0xFFFE007FFFFFFFFF,

0xFFFC00FFFFFFFFFF, 0xFFF801FFFFFFFFFF, 0xFFF003FFFFFFFFFF, 0xFFE007FFFFFFFFFF,

0xFFC00FFFFFFFFFFF, 0xFF801FFFFFFFFFFF, 0xFF003FFFFFFFFFFF, 0xFE007FFFFFFFFFFF,

0xFC00FFFFFFFFFFFF, 0xF801FFFFFFFFFFFF, 0xF003FFFFFFFFFFFF, 0xE007FFFFFFFFFFFF,

0xC00FFFFFFFFFFFFF, 0x801FFFFFFFFFFFFF, 0x003FFFFFFFFFFFFF, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFFF800, 0xFFFFFFFFFFFFF001, 0xFFFFFFFFFFFFE003, 0xFFFFFFFFFFFFC007,

0xFFFFFFFFFFFF800F, 0xFFFFFFFFFFFF001F, 0xFFFFFFFFFFFE003F, 0xFFFFFFFFFFFC007F,

0xFFFFFFFFFFF800FF, 0xFFFFFFFFFFF001FF, 0xFFFFFFFFFFE003FF, 0xFFFFFFFFFFC007FF,

0xFFFFFFFFFF800FFF, 0xFFFFFFFFFF001FFF, 0xFFFFFFFFFE003FFF, 0xFFFFFFFFFC007FFF,

0xFFFFFFFFF800FFFF, 0xFFFFFFFFF001FFFF, 0xFFFFFFFFE003FFFF, 0xFFFFFFFFC007FFFF,

0xFFFFFFFF800FFFFF, 0xFFFFFFFF001FFFFF, 0xFFFFFFFE003FFFFF, 0xFFFFFFFC007FFFFF,

0xFFFFFFF800FFFFFF, 0xFFFFFFF001FFFFFF, 0xFFFFFFE003FFFFFF, 0xFFFFFFC007FFFFFF,

0xFFFFFF800FFFFFFF, 0xFFFFFF001FFFFFFF, 0xFFFFFE003FFFFFFF, 0xFFFFFC007FFFFFFF,

0xFFFFF800FFFFFFFF, 0xFFFFF001FFFFFFFF, 0xFFFFE003FFFFFFFF, 0xFFFFC007FFFFFFFF,

0xFFFF800FFFFFFFFF, 0xFFFF001FFFFFFFFF, 0xFFFE003FFFFFFFFF, 0xFFFC007FFFFFFFFF, Pr
el
im

in
ar

y

230 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0xFFF800FFFFFFFFFF, 0xFFF001FFFFFFFFFF, 0xFFE003FFFFFFFFFF, 0xFFC007FFFFFFFFFF,

0xFF800FFFFFFFFFFF, 0xFF001FFFFFFFFFFF, 0xFE003FFFFFFFFFFF, 0xFC007FFFFFFFFFFF,

0xF800FFFFFFFFFFFF, 0xF001FFFFFFFFFFFF, 0xE003FFFFFFFFFFFF, 0xC007FFFFFFFFFFFF,

0x800FFFFFFFFFFFFF, 0x001FFFFFFFFFFFFF, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFFF000, 0xFFFFFFFFFFFFE001, 0xFFFFFFFFFFFFC003, 0xFFFFFFFFFFFF8007,

0xFFFFFFFFFFFF000F, 0xFFFFFFFFFFFE001F, 0xFFFFFFFFFFFC003F, 0xFFFFFFFFFFF8007F,

0xFFFFFFFFFFF000FF, 0xFFFFFFFFFFE001FF, 0xFFFFFFFFFFC003FF, 0xFFFFFFFFFF8007FF,

0xFFFFFFFFFF000FFF, 0xFFFFFFFFFE001FFF, 0xFFFFFFFFFC003FFF, 0xFFFFFFFFF8007FFF,

0xFFFFFFFFF000FFFF, 0xFFFFFFFFE001FFFF, 0xFFFFFFFFC003FFFF, 0xFFFFFFFF8007FFFF,

0xFFFFFFFF000FFFFF, 0xFFFFFFFE001FFFFF, 0xFFFFFFFC003FFFFF, 0xFFFFFFF8007FFFFF,

0xFFFFFFF000FFFFFF, 0xFFFFFFE001FFFFFF, 0xFFFFFFC003FFFFFF, 0xFFFFFF8007FFFFFF,

0xFFFFFF000FFFFFFF, 0xFFFFFE001FFFFFFF, 0xFFFFFC003FFFFFFF, 0xFFFFF8007FFFFFFF,

0xFFFFF000FFFFFFFF, 0xFFFFE001FFFFFFFF, 0xFFFFC003FFFFFFFF, 0xFFFF8007FFFFFFFF,

0xFFFF000FFFFFFFFF, 0xFFFE001FFFFFFFFF, 0xFFFC003FFFFFFFFF, 0xFFF8007FFFFFFFFF,

0xFFF000FFFFFFFFFF, 0xFFE001FFFFFFFFFF, 0xFFC003FFFFFFFFFF, 0xFF8007FFFFFFFFFF,

0xFF000FFFFFFFFFFF, 0xFE001FFFFFFFFFFF, 0xFC003FFFFFFFFFFF, 0xF8007FFFFFFFFFFF,

0xF000FFFFFFFFFFFF, 0xE001FFFFFFFFFFFF, 0xC003FFFFFFFFFFFF, 0x8007FFFFFFFFFFFF,

0x000FFFFFFFFFFFFF, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFFE000, 0xFFFFFFFFFFFFC001, 0xFFFFFFFFFFFF8003, 0xFFFFFFFFFFFF0007,

0xFFFFFFFFFFFE000F, 0xFFFFFFFFFFFC001F, 0xFFFFFFFFFFF8003F, 0xFFFFFFFFFFF0007F,

0xFFFFFFFFFFE000FF, 0xFFFFFFFFFFC001FF, 0xFFFFFFFFFF8003FF, 0xFFFFFFFFFF0007FF,

0xFFFFFFFFFE000FFF, 0xFFFFFFFFFC001FFF, 0xFFFFFFFFF8003FFF, 0xFFFFFFFFF0007FFF,

0xFFFFFFFFE000FFFF, 0xFFFFFFFFC001FFFF, 0xFFFFFFFF8003FFFF, 0xFFFFFFFF0007FFFF,

0xFFFFFFFE000FFFFF, 0xFFFFFFFC001FFFFF, 0xFFFFFFF8003FFFFF, 0xFFFFFFF0007FFFFF,

0xFFFFFFE000FFFFFF, 0xFFFFFFC001FFFFFF, 0xFFFFFF8003FFFFFF, 0xFFFFFF0007FFFFFF,

0xFFFFFE000FFFFFFF, 0xFFFFFC001FFFFFFF, 0xFFFFF8003FFFFFFF, 0xFFFFF0007FFFFFFF,

0xFFFFE000FFFFFFFF, 0xFFFFC001FFFFFFFF, 0xFFFF8003FFFFFFFF, 0xFFFF0007FFFFFFFF,

0xFFFE000FFFFFFFFF, 0xFFFC001FFFFFFFFF, 0xFFF8003FFFFFFFFF, 0xFFF0007FFFFFFFFF,

0xFFE000FFFFFFFFFF, 0xFFC001FFFFFFFFFF, 0xFF8003FFFFFFFFFF, 0xFF0007FFFFFFFFFF,

0xFE000FFFFFFFFFFF, 0xFC001FFFFFFFFFFF, 0xF8003FFFFFFFFFFF, 0xF0007FFFFFFFFFFF,

0xE000FFFFFFFFFFFF, 0xC001FFFFFFFFFFFF, 0x8003FFFFFFFFFFFF, 0x0007FFFFFFFFFFFF,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFFC000, 0xFFFFFFFFFFFF8001, 0xFFFFFFFFFFFF0003, 0xFFFFFFFFFFFE0007,

0xFFFFFFFFFFFC000F, 0xFFFFFFFFFFF8001F, 0xFFFFFFFFFFF0003F, 0xFFFFFFFFFFE0007F,

0xFFFFFFFFFFC000FF, 0xFFFFFFFFFF8001FF, 0xFFFFFFFFFF0003FF, 0xFFFFFFFFFE0007FF,

0xFFFFFFFFFC000FFF, 0xFFFFFFFFF8001FFF, 0xFFFFFFFFF0003FFF, 0xFFFFFFFFE0007FFF,

0xFFFFFFFFC000FFFF, 0xFFFFFFFF8001FFFF, 0xFFFFFFFF0003FFFF, 0xFFFFFFFE0007FFFF,

0xFFFFFFFC000FFFFF, 0xFFFFFFF8001FFFFF, 0xFFFFFFF0003FFFFF, 0xFFFFFFE0007FFFFF,

0xFFFFFFC000FFFFFF, 0xFFFFFF8001FFFFFF, 0xFFFFFF0003FFFFFF, 0xFFFFFE0007FFFFFF,

0xFFFFFC000FFFFFFF, 0xFFFFF8001FFFFFFF, 0xFFFFF0003FFFFFFF, 0xFFFFE0007FFFFFFF,

0xFFFFC000FFFFFFFF, 0xFFFF8001FFFFFFFF, 0xFFFF0003FFFFFFFF, 0xFFFE0007FFFFFFFF,

0xFFFC000FFFFFFFFF, 0xFFF8001FFFFFFFFF, 0xFFF0003FFFFFFFFF, 0xFFE0007FFFFFFFFF,

0xFFC000FFFFFFFFFF, 0xFF8001FFFFFFFFFF, 0xFF0003FFFFFFFFFF, 0xFE0007FFFFFFFFFF,

0xFC000FFFFFFFFFFF, 0xF8001FFFFFFFFFFF, 0xF0003FFFFFFFFFFF, 0xE0007FFFFFFFFFFF,

0xC000FFFFFFFFFFFF, 0x8001FFFFFFFFFFFF, 0x0003FFFFFFFFFFFF, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFF8000, 0xFFFFFFFFFFFF0001, 0xFFFFFFFFFFFE0003, 0xFFFFFFFFFFFC0007,

0xFFFFFFFFFFF8000F, 0xFFFFFFFFFFF0001F, 0xFFFFFFFFFFE0003F, 0xFFFFFFFFFFC0007F,

0xFFFFFFFFFF8000FF, 0xFFFFFFFFFF0001FF, 0xFFFFFFFFFE0003FF, 0xFFFFFFFFFC0007FF,

0xFFFFFFFFF8000FFF, 0xFFFFFFFFF0001FFF, 0xFFFFFFFFE0003FFF, 0xFFFFFFFFC0007FFF,

0xFFFFFFFF8000FFFF, 0xFFFFFFFF0001FFFF, 0xFFFFFFFE0003FFFF, 0xFFFFFFFC0007FFFF,

0xFFFFFFF8000FFFFF, 0xFFFFFFF0001FFFFF, 0xFFFFFFE0003FFFFF, 0xFFFFFFC0007FFFFF,

0xFFFFFF8000FFFFFF, 0xFFFFFF0001FFFFFF, 0xFFFFFE0003FFFFFF, 0xFFFFFC0007FFFFFF,

0xFFFFF8000FFFFFFF, 0xFFFFF0001FFFFFFF, 0xFFFFE0003FFFFFFF, 0xFFFFC0007FFFFFFF,

0xFFFF8000FFFFFFFF, 0xFFFF0001FFFFFFFF, 0xFFFE0003FFFFFFFF, 0xFFFC0007FFFFFFFF,

0xFFF8000FFFFFFFFF, 0xFFF0001FFFFFFFFF, 0xFFE0003FFFFFFFFF, 0xFFC0007FFFFFFFFF,

0xFF8000FFFFFFFFFF, 0xFF0001FFFFFFFFFF, 0xFE0003FFFFFFFFFF, 0xFC0007FFFFFFFFFF,

0xF8000FFFFFFFFFFF, 0xF0001FFFFFFFFFFF, 0xE0003FFFFFFFFFFF, 0xC0007FFFFFFFFFFF, Pr
el
im

in
ar

y

231 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0x8000FFFFFFFFFFFF, 0x0001FFFFFFFFFFFF, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFF0000, 0xFFFFFFFFFFFE0001, 0xFFFFFFFFFFFC0003, 0xFFFFFFFFFFF80007,

0xFFFFFFFFFFF0000F, 0xFFFFFFFFFFE0001F, 0xFFFFFFFFFFC0003F, 0xFFFFFFFFFF80007F,

0xFFFFFFFFFF0000FF, 0xFFFFFFFFFE0001FF, 0xFFFFFFFFFC0003FF, 0xFFFFFFFFF80007FF,

0xFFFFFFFFF0000FFF, 0xFFFFFFFFE0001FFF, 0xFFFFFFFFC0003FFF, 0xFFFFFFFF80007FFF,

0xFFFFFFFF0000FFFF, 0xFFFFFFFE0001FFFF, 0xFFFFFFFC0003FFFF, 0xFFFFFFF80007FFFF,

0xFFFFFFF0000FFFFF, 0xFFFFFFE0001FFFFF, 0xFFFFFFC0003FFFFF, 0xFFFFFF80007FFFFF,

0xFFFFFF0000FFFFFF, 0xFFFFFE0001FFFFFF, 0xFFFFFC0003FFFFFF, 0xFFFFF80007FFFFFF,

0xFFFFF0000FFFFFFF, 0xFFFFE0001FFFFFFF, 0xFFFFC0003FFFFFFF, 0xFFFF80007FFFFFFF,

0xFFFF0000FFFFFFFF, 0xFFFE0001FFFFFFFF, 0xFFFC0003FFFFFFFF, 0xFFF80007FFFFFFFF,

0xFFF0000FFFFFFFFF, 0xFFE0001FFFFFFFFF, 0xFFC0003FFFFFFFFF, 0xFF80007FFFFFFFFF,

0xFF0000FFFFFFFFFF, 0xFE0001FFFFFFFFFF, 0xFC0003FFFFFFFFFF, 0xF80007FFFFFFFFFF,

0xF0000FFFFFFFFFFF, 0xE0001FFFFFFFFFFF, 0xC0003FFFFFFFFFFF, 0x80007FFFFFFFFFFF,

0x0000FFFFFFFFFFFF, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFE0000, 0xFFFFFFFFFFFC0001, 0xFFFFFFFFFFF80003, 0xFFFFFFFFFFF00007,

0xFFFFFFFFFFE0000F, 0xFFFFFFFFFFC0001F, 0xFFFFFFFFFF80003F, 0xFFFFFFFFFF00007F,

0xFFFFFFFFFE0000FF, 0xFFFFFFFFFC0001FF, 0xFFFFFFFFF80003FF, 0xFFFFFFFFF00007FF,

0xFFFFFFFFE0000FFF, 0xFFFFFFFFC0001FFF, 0xFFFFFFFF80003FFF, 0xFFFFFFFF00007FFF,

0xFFFFFFFE0000FFFF, 0xFFFFFFFC0001FFFF, 0xFFFFFFF80003FFFF, 0xFFFFFFF00007FFFF,

0xFFFFFFE0000FFFFF, 0xFFFFFFC0001FFFFF, 0xFFFFFF80003FFFFF, 0xFFFFFF00007FFFFF,

0xFFFFFE0000FFFFFF, 0xFFFFFC0001FFFFFF, 0xFFFFF80003FFFFFF, 0xFFFFF00007FFFFFF,

0xFFFFE0000FFFFFFF, 0xFFFFC0001FFFFFFF, 0xFFFF80003FFFFFFF, 0xFFFF00007FFFFFFF,

0xFFFE0000FFFFFFFF, 0xFFFC0001FFFFFFFF, 0xFFF80003FFFFFFFF, 0xFFF00007FFFFFFFF,

0xFFE0000FFFFFFFFF, 0xFFC0001FFFFFFFFF, 0xFF80003FFFFFFFFF, 0xFF00007FFFFFFFFF,

0xFE0000FFFFFFFFFF, 0xFC0001FFFFFFFFFF, 0xF80003FFFFFFFFFF, 0xF00007FFFFFFFFFF,

0xE0000FFFFFFFFFFF, 0xC0001FFFFFFFFFFF, 0x80003FFFFFFFFFFF, 0x00007FFFFFFFFFFF,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFFC0000, 0xFFFFFFFFFFF80001, 0xFFFFFFFFFFF00003, 0xFFFFFFFFFFE00007,

0xFFFFFFFFFFC0000F, 0xFFFFFFFFFF80001F, 0xFFFFFFFFFF00003F, 0xFFFFFFFFFE00007F,

0xFFFFFFFFFC0000FF, 0xFFFFFFFFF80001FF, 0xFFFFFFFFF00003FF, 0xFFFFFFFFE00007FF,

0xFFFFFFFFC0000FFF, 0xFFFFFFFF80001FFF, 0xFFFFFFFF00003FFF, 0xFFFFFFFE00007FFF,

0xFFFFFFFC0000FFFF, 0xFFFFFFF80001FFFF, 0xFFFFFFF00003FFFF, 0xFFFFFFE00007FFFF,

0xFFFFFFC0000FFFFF, 0xFFFFFF80001FFFFF, 0xFFFFFF00003FFFFF, 0xFFFFFE00007FFFFF,

0xFFFFFC0000FFFFFF, 0xFFFFF80001FFFFFF, 0xFFFFF00003FFFFFF, 0xFFFFE00007FFFFFF,

0xFFFFC0000FFFFFFF, 0xFFFF80001FFFFFFF, 0xFFFF00003FFFFFFF, 0xFFFE00007FFFFFFF,

0xFFFC0000FFFFFFFF, 0xFFF80001FFFFFFFF, 0xFFF00003FFFFFFFF, 0xFFE00007FFFFFFFF,

0xFFC0000FFFFFFFFF, 0xFF80001FFFFFFFFF, 0xFF00003FFFFFFFFF, 0xFE00007FFFFFFFFF,

0xFC0000FFFFFFFFFF, 0xF80001FFFFFFFFFF, 0xF00003FFFFFFFFFF, 0xE00007FFFFFFFFFF,

0xC0000FFFFFFFFFFF, 0x80001FFFFFFFFFFF, 0x00003FFFFFFFFFFF, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFF80000, 0xFFFFFFFFFFF00001, 0xFFFFFFFFFFE00003, 0xFFFFFFFFFFC00007,

0xFFFFFFFFFF80000F, 0xFFFFFFFFFF00001F, 0xFFFFFFFFFE00003F, 0xFFFFFFFFFC00007F,

0xFFFFFFFFF80000FF, 0xFFFFFFFFF00001FF, 0xFFFFFFFFE00003FF, 0xFFFFFFFFC00007FF,

0xFFFFFFFF80000FFF, 0xFFFFFFFF00001FFF, 0xFFFFFFFE00003FFF, 0xFFFFFFFC00007FFF,

0xFFFFFFF80000FFFF, 0xFFFFFFF00001FFFF, 0xFFFFFFE00003FFFF, 0xFFFFFFC00007FFFF,

0xFFFFFF80000FFFFF, 0xFFFFFF00001FFFFF, 0xFFFFFE00003FFFFF, 0xFFFFFC00007FFFFF,

0xFFFFF80000FFFFFF, 0xFFFFF00001FFFFFF, 0xFFFFE00003FFFFFF, 0xFFFFC00007FFFFFF,

0xFFFF80000FFFFFFF, 0xFFFF00001FFFFFFF, 0xFFFE00003FFFFFFF, 0xFFFC00007FFFFFFF,

0xFFF80000FFFFFFFF, 0xFFF00001FFFFFFFF, 0xFFE00003FFFFFFFF, 0xFFC00007FFFFFFFF,

0xFF80000FFFFFFFFF, 0xFF00001FFFFFFFFF, 0xFE00003FFFFFFFFF, 0xFC00007FFFFFFFFF,

0xF80000FFFFFFFFFF, 0xF00001FFFFFFFFFF, 0xE00003FFFFFFFFFF, 0xC00007FFFFFFFFFF,

0x80000FFFFFFFFFFF, 0x00001FFFFFFFFFFF, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, Pr
el
im

in
ar

y

232 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFF00000, 0xFFFFFFFFFFE00001, 0xFFFFFFFFFFC00003, 0xFFFFFFFFFF800007,

0xFFFFFFFFFF00000F, 0xFFFFFFFFFE00001F, 0xFFFFFFFFFC00003F, 0xFFFFFFFFF800007F,

0xFFFFFFFFF00000FF, 0xFFFFFFFFE00001FF, 0xFFFFFFFFC00003FF, 0xFFFFFFFF800007FF,

0xFFFFFFFF00000FFF, 0xFFFFFFFE00001FFF, 0xFFFFFFFC00003FFF, 0xFFFFFFF800007FFF,

0xFFFFFFF00000FFFF, 0xFFFFFFE00001FFFF, 0xFFFFFFC00003FFFF, 0xFFFFFF800007FFFF,

0xFFFFFF00000FFFFF, 0xFFFFFE00001FFFFF, 0xFFFFFC00003FFFFF, 0xFFFFF800007FFFFF,

0xFFFFF00000FFFFFF, 0xFFFFE00001FFFFFF, 0xFFFFC00003FFFFFF, 0xFFFF800007FFFFFF,

0xFFFF00000FFFFFFF, 0xFFFE00001FFFFFFF, 0xFFFC00003FFFFFFF, 0xFFF800007FFFFFFF,

0xFFF00000FFFFFFFF, 0xFFE00001FFFFFFFF, 0xFFC00003FFFFFFFF, 0xFF800007FFFFFFFF,

0xFF00000FFFFFFFFF, 0xFE00001FFFFFFFFF, 0xFC00003FFFFFFFFF, 0xF800007FFFFFFFFF,

0xF00000FFFFFFFFFF, 0xE00001FFFFFFFFFF, 0xC00003FFFFFFFFFF, 0x800007FFFFFFFFFF,

0x00000FFFFFFFFFFF, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFE00000, 0xFFFFFFFFFFC00001, 0xFFFFFFFFFF800003, 0xFFFFFFFFFF000007,

0xFFFFFFFFFE00000F, 0xFFFFFFFFFC00001F, 0xFFFFFFFFF800003F, 0xFFFFFFFFF000007F,

0xFFFFFFFFE00000FF, 0xFFFFFFFFC00001FF, 0xFFFFFFFF800003FF, 0xFFFFFFFF000007FF,

0xFFFFFFFE00000FFF, 0xFFFFFFFC00001FFF, 0xFFFFFFF800003FFF, 0xFFFFFFF000007FFF,

0xFFFFFFE00000FFFF, 0xFFFFFFC00001FFFF, 0xFFFFFF800003FFFF, 0xFFFFFF000007FFFF,

0xFFFFFE00000FFFFF, 0xFFFFFC00001FFFFF, 0xFFFFF800003FFFFF, 0xFFFFF000007FFFFF,

0xFFFFE00000FFFFFF, 0xFFFFC00001FFFFFF, 0xFFFF800003FFFFFF, 0xFFFF000007FFFFFF,

0xFFFE00000FFFFFFF, 0xFFFC00001FFFFFFF, 0xFFF800003FFFFFFF, 0xFFF000007FFFFFFF,

0xFFE00000FFFFFFFF, 0xFFC00001FFFFFFFF, 0xFF800003FFFFFFFF, 0xFF000007FFFFFFFF,

0xFE00000FFFFFFFFF, 0xFC00001FFFFFFFFF, 0xF800003FFFFFFFFF, 0xF000007FFFFFFFFF,

0xE00000FFFFFFFFFF, 0xC00001FFFFFFFFFF, 0x800003FFFFFFFFFF, 0x000007FFFFFFFFFF,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFFC00000, 0xFFFFFFFFFF800001, 0xFFFFFFFFFF000003, 0xFFFFFFFFFE000007,

0xFFFFFFFFFC00000F, 0xFFFFFFFFF800001F, 0xFFFFFFFFF000003F, 0xFFFFFFFFE000007F,

0xFFFFFFFFC00000FF, 0xFFFFFFFF800001FF, 0xFFFFFFFF000003FF, 0xFFFFFFFE000007FF,

0xFFFFFFFC00000FFF, 0xFFFFFFF800001FFF, 0xFFFFFFF000003FFF, 0xFFFFFFE000007FFF,

0xFFFFFFC00000FFFF, 0xFFFFFF800001FFFF, 0xFFFFFF000003FFFF, 0xFFFFFE000007FFFF,

0xFFFFFC00000FFFFF, 0xFFFFF800001FFFFF, 0xFFFFF000003FFFFF, 0xFFFFE000007FFFFF,

0xFFFFC00000FFFFFF, 0xFFFF800001FFFFFF, 0xFFFF000003FFFFFF, 0xFFFE000007FFFFFF,

0xFFFC00000FFFFFFF, 0xFFF800001FFFFFFF, 0xFFF000003FFFFFFF, 0xFFE000007FFFFFFF,

0xFFC00000FFFFFFFF, 0xFF800001FFFFFFFF, 0xFF000003FFFFFFFF, 0xFE000007FFFFFFFF,

0xFC00000FFFFFFFFF, 0xF800001FFFFFFFFF, 0xF000003FFFFFFFFF, 0xE000007FFFFFFFFF,

0xC00000FFFFFFFFFF, 0x800001FFFFFFFFFF, 0x000003FFFFFFFFFF, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFF800000, 0xFFFFFFFFFF000001, 0xFFFFFFFFFE000003, 0xFFFFFFFFFC000007,

0xFFFFFFFFF800000F, 0xFFFFFFFFF000001F, 0xFFFFFFFFE000003F, 0xFFFFFFFFC000007F,

0xFFFFFFFF800000FF, 0xFFFFFFFF000001FF, 0xFFFFFFFE000003FF, 0xFFFFFFFC000007FF,

0xFFFFFFF800000FFF, 0xFFFFFFF000001FFF, 0xFFFFFFE000003FFF, 0xFFFFFFC000007FFF,

0xFFFFFF800000FFFF, 0xFFFFFF000001FFFF, 0xFFFFFE000003FFFF, 0xFFFFFC000007FFFF,

0xFFFFF800000FFFFF, 0xFFFFF000001FFFFF, 0xFFFFE000003FFFFF, 0xFFFFC000007FFFFF,

0xFFFF800000FFFFFF, 0xFFFF000001FFFFFF, 0xFFFE000003FFFFFF, 0xFFFC000007FFFFFF,

0xFFF800000FFFFFFF, 0xFFF000001FFFFFFF, 0xFFE000003FFFFFFF, 0xFFC000007FFFFFFF,

0xFF800000FFFFFFFF, 0xFF000001FFFFFFFF, 0xFE000003FFFFFFFF, 0xFC000007FFFFFFFF,

0xF800000FFFFFFFFF, 0xF000001FFFFFFFFF, 0xE000003FFFFFFFFF, 0xC000007FFFFFFFFF,

0x800000FFFFFFFFFF, 0x000001FFFFFFFFFF, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, Pr
el
im

in
ar

y

233 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0xFFFFFFFFFF000000, 0xFFFFFFFFFE000001, 0xFFFFFFFFFC000003, 0xFFFFFFFFF8000007,

0xFFFFFFFFF000000F, 0xFFFFFFFFE000001F, 0xFFFFFFFFC000003F, 0xFFFFFFFF8000007F,

0xFFFFFFFF000000FF, 0xFFFFFFFE000001FF, 0xFFFFFFFC000003FF, 0xFFFFFFF8000007FF,

0xFFFFFFF000000FFF, 0xFFFFFFE000001FFF, 0xFFFFFFC000003FFF, 0xFFFFFF8000007FFF,

0xFFFFFF000000FFFF, 0xFFFFFE000001FFFF, 0xFFFFFC000003FFFF, 0xFFFFF8000007FFFF,

0xFFFFF000000FFFFF, 0xFFFFE000001FFFFF, 0xFFFFC000003FFFFF, 0xFFFF8000007FFFFF,

0xFFFF000000FFFFFF, 0xFFFE000001FFFFFF, 0xFFFC000003FFFFFF, 0xFFF8000007FFFFFF,

0xFFF000000FFFFFFF, 0xFFE000001FFFFFFF, 0xFFC000003FFFFFFF, 0xFF8000007FFFFFFF,

0xFF000000FFFFFFFF, 0xFE000001FFFFFFFF, 0xFC000003FFFFFFFF, 0xF8000007FFFFFFFF,

0xF000000FFFFFFFFF, 0xE000001FFFFFFFFF, 0xC000003FFFFFFFFF, 0x8000007FFFFFFFFF,

0x000000FFFFFFFFFF, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFE000000, 0xFFFFFFFFFC000001, 0xFFFFFFFFF8000003, 0xFFFFFFFFF0000007,

0xFFFFFFFFE000000F, 0xFFFFFFFFC000001F, 0xFFFFFFFF8000003F, 0xFFFFFFFF0000007F,

0xFFFFFFFE000000FF, 0xFFFFFFFC000001FF, 0xFFFFFFF8000003FF, 0xFFFFFFF0000007FF,

0xFFFFFFE000000FFF, 0xFFFFFFC000001FFF, 0xFFFFFF8000003FFF, 0xFFFFFF0000007FFF,

0xFFFFFE000000FFFF, 0xFFFFFC000001FFFF, 0xFFFFF8000003FFFF, 0xFFFFF0000007FFFF,

0xFFFFE000000FFFFF, 0xFFFFC000001FFFFF, 0xFFFF8000003FFFFF, 0xFFFF0000007FFFFF,

0xFFFE000000FFFFFF, 0xFFFC000001FFFFFF, 0xFFF8000003FFFFFF, 0xFFF0000007FFFFFF,

0xFFE000000FFFFFFF, 0xFFC000001FFFFFFF, 0xFF8000003FFFFFFF, 0xFF0000007FFFFFFF,

0xFE000000FFFFFFFF, 0xFC000001FFFFFFFF, 0xF8000003FFFFFFFF, 0xF0000007FFFFFFFF,

0xE000000FFFFFFFFF, 0xC000001FFFFFFFFF, 0x8000003FFFFFFFFF, 0x0000007FFFFFFFFF,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFFC000000, 0xFFFFFFFFF8000001, 0xFFFFFFFFF0000003, 0xFFFFFFFFE0000007,

0xFFFFFFFFC000000F, 0xFFFFFFFF8000001F, 0xFFFFFFFF0000003F, 0xFFFFFFFE0000007F,

0xFFFFFFFC000000FF, 0xFFFFFFF8000001FF, 0xFFFFFFF0000003FF, 0xFFFFFFE0000007FF,

0xFFFFFFC000000FFF, 0xFFFFFF8000001FFF, 0xFFFFFF0000003FFF, 0xFFFFFE0000007FFF,

0xFFFFFC000000FFFF, 0xFFFFF8000001FFFF, 0xFFFFF0000003FFFF, 0xFFFFE0000007FFFF,

0xFFFFC000000FFFFF, 0xFFFF8000001FFFFF, 0xFFFF0000003FFFFF, 0xFFFE0000007FFFFF,

0xFFFC000000FFFFFF, 0xFFF8000001FFFFFF, 0xFFF0000003FFFFFF, 0xFFE0000007FFFFFF,

0xFFC000000FFFFFFF, 0xFF8000001FFFFFFF, 0xFF0000003FFFFFFF, 0xFE0000007FFFFFFF,

0xFC000000FFFFFFFF, 0xF8000001FFFFFFFF, 0xF0000003FFFFFFFF, 0xE0000007FFFFFFFF,

0xC000000FFFFFFFFF, 0x8000001FFFFFFFFF, 0x0000003FFFFFFFFF, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFF8000000, 0xFFFFFFFFF0000001, 0xFFFFFFFFE0000003, 0xFFFFFFFFC0000007,

0xFFFFFFFF8000000F, 0xFFFFFFFF0000001F, 0xFFFFFFFE0000003F, 0xFFFFFFFC0000007F,

0xFFFFFFF8000000FF, 0xFFFFFFF0000001FF, 0xFFFFFFE0000003FF, 0xFFFFFFC0000007FF,

0xFFFFFF8000000FFF, 0xFFFFFF0000001FFF, 0xFFFFFE0000003FFF, 0xFFFFFC0000007FFF,

0xFFFFF8000000FFFF, 0xFFFFF0000001FFFF, 0xFFFFE0000003FFFF, 0xFFFFC0000007FFFF,

0xFFFF8000000FFFFF, 0xFFFF0000001FFFFF, 0xFFFE0000003FFFFF, 0xFFFC0000007FFFFF,

0xFFF8000000FFFFFF, 0xFFF0000001FFFFFF, 0xFFE0000003FFFFFF, 0xFFC0000007FFFFFF,

0xFF8000000FFFFFFF, 0xFF0000001FFFFFFF, 0xFE0000003FFFFFFF, 0xFC0000007FFFFFFF,

0xF8000000FFFFFFFF, 0xF0000001FFFFFFFF, 0xE0000003FFFFFFFF, 0xC0000007FFFFFFFF,

0x8000000FFFFFFFFF, 0x0000001FFFFFFFFF, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFF0000000, 0xFFFFFFFFE0000001, 0xFFFFFFFFC0000003, 0xFFFFFFFF80000007,

0xFFFFFFFF0000000F, 0xFFFFFFFE0000001F, 0xFFFFFFFC0000003F, 0xFFFFFFF80000007F, Pr
el
im

in
ar

y

234 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0xFFFFFFF0000000FF, 0xFFFFFFE0000001FF, 0xFFFFFFC0000003FF, 0xFFFFFF80000007FF,

0xFFFFFF0000000FFF, 0xFFFFFE0000001FFF, 0xFFFFFC0000003FFF, 0xFFFFF80000007FFF,

0xFFFFF0000000FFFF, 0xFFFFE0000001FFFF, 0xFFFFC0000003FFFF, 0xFFFF80000007FFFF,

0xFFFF0000000FFFFF, 0xFFFE0000001FFFFF, 0xFFFC0000003FFFFF, 0xFFF80000007FFFFF,

0xFFF0000000FFFFFF, 0xFFE0000001FFFFFF, 0xFFC0000003FFFFFF, 0xFF80000007FFFFFF,

0xFF0000000FFFFFFF, 0xFE0000001FFFFFFF, 0xFC0000003FFFFFFF, 0xF80000007FFFFFFF,

0xF0000000FFFFFFFF, 0xE0000001FFFFFFFF, 0xC0000003FFFFFFFF, 0x80000007FFFFFFFF,

0x0000000FFFFFFFFF, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFE0000000, 0xFFFFFFFFC0000001, 0xFFFFFFFF80000003, 0xFFFFFFFF00000007,

0xFFFFFFFE0000000F, 0xFFFFFFFC0000001F, 0xFFFFFFF80000003F, 0xFFFFFFF00000007F,

0xFFFFFFE0000000FF, 0xFFFFFFC0000001FF, 0xFFFFFF80000003FF, 0xFFFFFF00000007FF,

0xFFFFFE0000000FFF, 0xFFFFFC0000001FFF, 0xFFFFF80000003FFF, 0xFFFFF00000007FFF,

0xFFFFE0000000FFFF, 0xFFFFC0000001FFFF, 0xFFFF80000003FFFF, 0xFFFF00000007FFFF,

0xFFFE0000000FFFFF, 0xFFFC0000001FFFFF, 0xFFF80000003FFFFF, 0xFFF00000007FFFFF,

0xFFE0000000FFFFFF, 0xFFC0000001FFFFFF, 0xFF80000003FFFFFF, 0xFF00000007FFFFFF,

0xFE0000000FFFFFFF, 0xFC0000001FFFFFFF, 0xF80000003FFFFFFF, 0xF00000007FFFFFFF,

0xE0000000FFFFFFFF, 0xC0000001FFFFFFFF, 0x80000003FFFFFFFF, 0x00000007FFFFFFFF,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFFC0000000, 0xFFFFFFFF80000001, 0xFFFFFFFF00000003, 0xFFFFFFFE00000007,

0xFFFFFFFC0000000F, 0xFFFFFFF80000001F, 0xFFFFFFF00000003F, 0xFFFFFFE00000007F,

0xFFFFFFC0000000FF, 0xFFFFFF80000001FF, 0xFFFFFF00000003FF, 0xFFFFFE00000007FF,

0xFFFFFC0000000FFF, 0xFFFFF80000001FFF, 0xFFFFF00000003FFF, 0xFFFFE00000007FFF,

0xFFFFC0000000FFFF, 0xFFFF80000001FFFF, 0xFFFF00000003FFFF, 0xFFFE00000007FFFF,

0xFFFC0000000FFFFF, 0xFFF80000001FFFFF, 0xFFF00000003FFFFF, 0xFFE00000007FFFFF,

0xFFC0000000FFFFFF, 0xFF80000001FFFFFF, 0xFF00000003FFFFFF, 0xFE00000007FFFFFF,

0xFC0000000FFFFFFF, 0xF80000001FFFFFFF, 0xF00000003FFFFFFF, 0xE00000007FFFFFFF,

0xC0000000FFFFFFFF, 0x80000001FFFFFFFF, 0x00000003FFFFFFFF, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFF80000000, 0xFFFFFFFF00000001, 0xFFFFFFFE00000003, 0xFFFFFFFC00000007,

0xFFFFFFF80000000F, 0xFFFFFFF00000001F, 0xFFFFFFE00000003F, 0xFFFFFFC00000007F,

0xFFFFFF80000000FF, 0xFFFFFF00000001FF, 0xFFFFFE00000003FF, 0xFFFFFC00000007FF,

0xFFFFF80000000FFF, 0xFFFFF00000001FFF, 0xFFFFE00000003FFF, 0xFFFFC00000007FFF,

0xFFFF80000000FFFF, 0xFFFF00000001FFFF, 0xFFFE00000003FFFF, 0xFFFC00000007FFFF,

0xFFF80000000FFFFF, 0xFFF00000001FFFFF, 0xFFE00000003FFFFF, 0xFFC00000007FFFFF,

0xFF80000000FFFFFF, 0xFF00000001FFFFFF, 0xFE00000003FFFFFF, 0xFC00000007FFFFFF,

0xF80000000FFFFFFF, 0xF00000001FFFFFFF, 0xE00000003FFFFFFF, 0xC00000007FFFFFFF,

0x80000000FFFFFFFF, 0x00000001FFFFFFFF, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFF00000000, 0xFFFFFFFE00000001, 0xFFFFFFFC00000003, 0xFFFFFFF800000007,

0xFFFFFFF00000000F, 0xFFFFFFE00000001F, 0xFFFFFFC00000003F, 0xFFFFFF800000007F,

0xFFFFFF00000000FF, 0xFFFFFE00000001FF, 0xFFFFFC00000003FF, 0xFFFFF800000007FF,

0xFFFFF00000000FFF, 0xFFFFE00000001FFF, 0xFFFFC00000003FFF, 0xFFFF800000007FFF, Pr
el
im

in
ar

y

235 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0xFFFF00000000FFFF, 0xFFFE00000001FFFF, 0xFFFC00000003FFFF, 0xFFF800000007FFFF,

0xFFF00000000FFFFF, 0xFFE00000001FFFFF, 0xFFC00000003FFFFF, 0xFF800000007FFFFF,

0xFF00000000FFFFFF, 0xFE00000001FFFFFF, 0xFC00000003FFFFFF, 0xF800000007FFFFFF,

0xF00000000FFFFFFF, 0xE00000001FFFFFFF, 0xC00000003FFFFFFF, 0x800000007FFFFFFF,

0x00000000FFFFFFFF, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFE00000000, 0xFFFFFFFC00000001, 0xFFFFFFF800000003, 0xFFFFFFF000000007,

0xFFFFFFE00000000F, 0xFFFFFFC00000001F, 0xFFFFFF800000003F, 0xFFFFFF000000007F,

0xFFFFFE00000000FF, 0xFFFFFC00000001FF, 0xFFFFF800000003FF, 0xFFFFF000000007FF,

0xFFFFE00000000FFF, 0xFFFFC00000001FFF, 0xFFFF800000003FFF, 0xFFFF000000007FFF,

0xFFFE00000000FFFF, 0xFFFC00000001FFFF, 0xFFF800000003FFFF, 0xFFF000000007FFFF,

0xFFE00000000FFFFF, 0xFFC00000001FFFFF, 0xFF800000003FFFFF, 0xFF000000007FFFFF,

0xFE00000000FFFFFF, 0xFC00000001FFFFFF, 0xF800000003FFFFFF, 0xF000000007FFFFFF,

0xE00000000FFFFFFF, 0xC00000001FFFFFFF, 0x800000003FFFFFFF, 0x000000007FFFFFFF,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFFC00000000, 0xFFFFFFF800000001, 0xFFFFFFF000000003, 0xFFFFFFE000000007,

0xFFFFFFC00000000F, 0xFFFFFF800000001F, 0xFFFFFF000000003F, 0xFFFFFE000000007F,

0xFFFFFC00000000FF, 0xFFFFF800000001FF, 0xFFFFF000000003FF, 0xFFFFE000000007FF,

0xFFFFC00000000FFF, 0xFFFF800000001FFF, 0xFFFF000000003FFF, 0xFFFE000000007FFF,

0xFFFC00000000FFFF, 0xFFF800000001FFFF, 0xFFF000000003FFFF, 0xFFE000000007FFFF,

0xFFC00000000FFFFF, 0xFF800000001FFFFF, 0xFF000000003FFFFF, 0xFE000000007FFFFF,

0xFC00000000FFFFFF, 0xF800000001FFFFFF, 0xF000000003FFFFFF, 0xE000000007FFFFFF,

0xC00000000FFFFFFF, 0x800000001FFFFFFF, 0x000000003FFFFFFF, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFF800000000, 0xFFFFFFF000000001, 0xFFFFFFE000000003, 0xFFFFFFC000000007,

0xFFFFFF800000000F, 0xFFFFFF000000001F, 0xFFFFFE000000003F, 0xFFFFFC000000007F,

0xFFFFF800000000FF, 0xFFFFF000000001FF, 0xFFFFE000000003FF, 0xFFFFC000000007FF,

0xFFFF800000000FFF, 0xFFFF000000001FFF, 0xFFFE000000003FFF, 0xFFFC000000007FFF,

0xFFF800000000FFFF, 0xFFF000000001FFFF, 0xFFE000000003FFFF, 0xFFC000000007FFFF,

0xFF800000000FFFFF, 0xFF000000001FFFFF, 0xFE000000003FFFFF, 0xFC000000007FFFFF,

0xF800000000FFFFFF, 0xF000000001FFFFFF, 0xE000000003FFFFFF, 0xC000000007FFFFFF,

0x800000000FFFFFFF, 0x000000001FFFFFFF, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFF000000000, 0xFFFFFFE000000001, 0xFFFFFFC000000003, 0xFFFFFF8000000007,

0xFFFFFF000000000F, 0xFFFFFE000000001F, 0xFFFFFC000000003F, 0xFFFFF8000000007F,

0xFFFFF000000000FF, 0xFFFFE000000001FF, 0xFFFFC000000003FF, 0xFFFF8000000007FF,

0xFFFF000000000FFF, 0xFFFE000000001FFF, 0xFFFC000000003FFF, 0xFFF8000000007FFF,

0xFFF000000000FFFF, 0xFFE000000001FFFF, 0xFFC000000003FFFF, 0xFF8000000007FFFF,

0xFF000000000FFFFF, 0xFE000000001FFFFF, 0xFC000000003FFFFF, 0xF8000000007FFFFF, Pr
el
im

in
ar

y

236 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0xF000000000FFFFFF, 0xE000000001FFFFFF, 0xC000000003FFFFFF, 0x8000000007FFFFFF,

0x000000000FFFFFFF, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFE000000000, 0xFFFFFFC000000001, 0xFFFFFF8000000003, 0xFFFFFF0000000007,

0xFFFFFE000000000F, 0xFFFFFC000000001F, 0xFFFFF8000000003F, 0xFFFFF0000000007F,

0xFFFFE000000000FF, 0xFFFFC000000001FF, 0xFFFF8000000003FF, 0xFFFF0000000007FF,

0xFFFE000000000FFF, 0xFFFC000000001FFF, 0xFFF8000000003FFF, 0xFFF0000000007FFF,

0xFFE000000000FFFF, 0xFFC000000001FFFF, 0xFF8000000003FFFF, 0xFF0000000007FFFF,

0xFE000000000FFFFF, 0xFC000000001FFFFF, 0xF8000000003FFFFF, 0xF0000000007FFFFF,

0xE000000000FFFFFF, 0xC000000001FFFFFF, 0x8000000003FFFFFF, 0x0000000007FFFFFF,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFFC000000000, 0xFFFFFF8000000001, 0xFFFFFF0000000003, 0xFFFFFE0000000007,

0xFFFFFC000000000F, 0xFFFFF8000000001F, 0xFFFFF0000000003F, 0xFFFFE0000000007F,

0xFFFFC000000000FF, 0xFFFF8000000001FF, 0xFFFF0000000003FF, 0xFFFE0000000007FF,

0xFFFC000000000FFF, 0xFFF8000000001FFF, 0xFFF0000000003FFF, 0xFFE0000000007FFF,

0xFFC000000000FFFF, 0xFF8000000001FFFF, 0xFF0000000003FFFF, 0xFE0000000007FFFF,

0xFC000000000FFFFF, 0xF8000000001FFFFF, 0xF0000000003FFFFF, 0xE0000000007FFFFF,

0xC000000000FFFFFF, 0x8000000001FFFFFF, 0x0000000003FFFFFF, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFF8000000000, 0xFFFFFF0000000001, 0xFFFFFE0000000003, 0xFFFFFC0000000007,

0xFFFFF8000000000F, 0xFFFFF0000000001F, 0xFFFFE0000000003F, 0xFFFFC0000000007F,

0xFFFF8000000000FF, 0xFFFF0000000001FF, 0xFFFE0000000003FF, 0xFFFC0000000007FF,

0xFFF8000000000FFF, 0xFFF0000000001FFF, 0xFFE0000000003FFF, 0xFFC0000000007FFF,

0xFF8000000000FFFF, 0xFF0000000001FFFF, 0xFE0000000003FFFF, 0xFC0000000007FFFF,

0xF8000000000FFFFF, 0xF0000000001FFFFF, 0xE0000000003FFFFF, 0xC0000000007FFFFF,

0x8000000000FFFFFF, 0x0000000001FFFFFF, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFF0000000000, 0xFFFFFE0000000001, 0xFFFFFC0000000003, 0xFFFFF80000000007,

0xFFFFF0000000000F, 0xFFFFE0000000001F, 0xFFFFC0000000003F, 0xFFFF80000000007F,

0xFFFF0000000000FF, 0xFFFE0000000001FF, 0xFFFC0000000003FF, 0xFFF80000000007FF,

0xFFF0000000000FFF, 0xFFE0000000001FFF, 0xFFC0000000003FFF, 0xFF80000000007FFF,

0xFF0000000000FFFF, 0xFE0000000001FFFF, 0xFC0000000003FFFF, 0xF80000000007FFFF,

0xF0000000000FFFFF, 0xE0000000001FFFFF, 0xC0000000003FFFFF, 0x80000000007FFFFF,

0x0000000000FFFFFF, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, Pr
el
im

in
ar

y

237 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFE0000000000, 0xFFFFFC0000000001, 0xFFFFF80000000003, 0xFFFFF00000000007,

0xFFFFE0000000000F, 0xFFFFC0000000001F, 0xFFFF80000000003F, 0xFFFF00000000007F,

0xFFFE0000000000FF, 0xFFFC0000000001FF, 0xFFF80000000003FF, 0xFFF00000000007FF,

0xFFE0000000000FFF, 0xFFC0000000001FFF, 0xFF80000000003FFF, 0xFF00000000007FFF,

0xFE0000000000FFFF, 0xFC0000000001FFFF, 0xF80000000003FFFF, 0xF00000000007FFFF,

0xE0000000000FFFFF, 0xC0000000001FFFFF, 0x80000000003FFFFF, 0x00000000007FFFFF,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFFC0000000000, 0xFFFFF80000000001, 0xFFFFF00000000003, 0xFFFFE00000000007,

0xFFFFC0000000000F, 0xFFFF80000000001F, 0xFFFF00000000003F, 0xFFFE00000000007F,

0xFFFC0000000000FF, 0xFFF80000000001FF, 0xFFF00000000003FF, 0xFFE00000000007FF,

0xFFC0000000000FFF, 0xFF80000000001FFF, 0xFF00000000003FFF, 0xFE00000000007FFF,

0xFC0000000000FFFF, 0xF80000000001FFFF, 0xF00000000003FFFF, 0xE00000000007FFFF,

0xC0000000000FFFFF, 0x80000000001FFFFF, 0x00000000003FFFFF, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFF80000000000, 0xFFFFF00000000001, 0xFFFFE00000000003, 0xFFFFC00000000007,

0xFFFF80000000000F, 0xFFFF00000000001F, 0xFFFE00000000003F, 0xFFFC00000000007F,

0xFFF80000000000FF, 0xFFF00000000001FF, 0xFFE00000000003FF, 0xFFC00000000007FF,

0xFF80000000000FFF, 0xFF00000000001FFF, 0xFE00000000003FFF, 0xFC00000000007FFF,

0xF80000000000FFFF, 0xF00000000001FFFF, 0xE00000000003FFFF, 0xC00000000007FFFF,

0x80000000000FFFFF, 0x00000000001FFFFF, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFF00000000000, 0xFFFFE00000000001, 0xFFFFC00000000003, 0xFFFF800000000007,

0xFFFF00000000000F, 0xFFFE00000000001F, 0xFFFC00000000003F, 0xFFF800000000007F,

0xFFF00000000000FF, 0xFFE00000000001FF, 0xFFC00000000003FF, 0xFF800000000007FF,

0xFF00000000000FFF, 0xFE00000000001FFF, 0xFC00000000003FFF, 0xF800000000007FFF,

0xF00000000000FFFF, 0xE00000000001FFFF, 0xC00000000003FFFF, 0x800000000007FFFF,

0x00000000000FFFFF, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, Pr
el
im

in
ar

y

238 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFE00000000000, 0xFFFFC00000000001, 0xFFFF800000000003, 0xFFFF000000000007,

0xFFFE00000000000F, 0xFFFC00000000001F, 0xFFF800000000003F, 0xFFF000000000007F,

0xFFE00000000000FF, 0xFFC00000000001FF, 0xFF800000000003FF, 0xFF000000000007FF,

0xFE00000000000FFF, 0xFC00000000001FFF, 0xF800000000003FFF, 0xF000000000007FFF,

0xE00000000000FFFF, 0xC00000000001FFFF, 0x800000000003FFFF, 0x000000000007FFFF,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFFC00000000000, 0xFFFF800000000001, 0xFFFF000000000003, 0xFFFE000000000007,

0xFFFC00000000000F, 0xFFF800000000001F, 0xFFF000000000003F, 0xFFE000000000007F,

0xFFC00000000000FF, 0xFF800000000001FF, 0xFF000000000003FF, 0xFE000000000007FF,

0xFC00000000000FFF, 0xF800000000001FFF, 0xF000000000003FFF, 0xE000000000007FFF,

0xC00000000000FFFF, 0x800000000001FFFF, 0x000000000003FFFF, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFF800000000000, 0xFFFF000000000001, 0xFFFE000000000003, 0xFFFC000000000007,

0xFFF800000000000F, 0xFFF000000000001F, 0xFFE000000000003F, 0xFFC000000000007F,

0xFF800000000000FF, 0xFF000000000001FF, 0xFE000000000003FF, 0xFC000000000007FF,

0xF800000000000FFF, 0xF000000000001FFF, 0xE000000000003FFF, 0xC000000000007FFF,

0x800000000000FFFF, 0x000000000001FFFF, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFF000000000000, 0xFFFE000000000001, 0xFFFC000000000003, 0xFFF8000000000007,

0xFFF000000000000F, 0xFFE000000000001F, 0xFFC000000000003F, 0xFF8000000000007F,

0xFF000000000000FF, 0xFE000000000001FF, 0xFC000000000003FF, 0xF8000000000007FF,

0xF000000000000FFF, 0xE000000000001FFF, 0xC000000000003FFF, 0x8000000000007FFF,

0x000000000000FFFF, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, Pr
el
im

in
ar

y

239 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFE000000000000, 0xFFFC000000000001, 0xFFF8000000000003, 0xFFF0000000000007,

0xFFE000000000000F, 0xFFC000000000001F, 0xFF8000000000003F, 0xFF0000000000007F,

0xFE000000000000FF, 0xFC000000000001FF, 0xF8000000000003FF, 0xF0000000000007FF,

0xE000000000000FFF, 0xC000000000001FFF, 0x8000000000003FFF, 0x0000000000007FFF,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFFC000000000000, 0xFFF8000000000001, 0xFFF0000000000003, 0xFFE0000000000007,

0xFFC000000000000F, 0xFF8000000000001F, 0xFF0000000000003F, 0xFE0000000000007F,

0xFC000000000000FF, 0xF8000000000001FF, 0xF0000000000003FF, 0xE0000000000007FF,

0xC000000000000FFF, 0x8000000000001FFF, 0x0000000000003FFF, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFF8000000000000, 0xFFF0000000000001, 0xFFE0000000000003, 0xFFC0000000000007,

0xFF8000000000000F, 0xFF0000000000001F, 0xFE0000000000003F, 0xFC0000000000007F,

0xF8000000000000FF, 0xF0000000000001FF, 0xE0000000000003FF, 0xC0000000000007FF,

0x8000000000000FFF, 0x0000000000001FFF, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFF0000000000000, 0xFFE0000000000001, 0xFFC0000000000003, 0xFF80000000000007,

0xFF0000000000000F, 0xFE0000000000001F, 0xFC0000000000003F, 0xF80000000000007F,

0xF0000000000000FF, 0xE0000000000001FF, 0xC0000000000003FF, 0x80000000000007FF,

0x0000000000000FFF, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, Pr
el
im

in
ar

y

240 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFE0000000000000, 0xFFC0000000000001, 0xFF80000000000003, 0xFF00000000000007,

0xFE0000000000000F, 0xFC0000000000001F, 0xF80000000000003F, 0xF00000000000007F,

0xE0000000000000FF, 0xC0000000000001FF, 0x80000000000003FF, 0x00000000000007FF,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFFC0000000000000, 0xFF80000000000001, 0xFF00000000000003, 0xFE00000000000007,

0xFC0000000000000F, 0xF80000000000001F, 0xF00000000000003F, 0xE00000000000007F,

0xC0000000000000FF, 0x80000000000001FF, 0x00000000000003FF, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFF80000000000000, 0xFF00000000000001, 0xFE00000000000003, 0xFC00000000000007,

0xF80000000000000F, 0xF00000000000001F, 0xE00000000000003F, 0xC00000000000007F,

0x80000000000000FF, 0x00000000000001FF, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFF00000000000000, 0xFE00000000000001, 0xFC00000000000003, 0xF800000000000007,

0xF00000000000000F, 0xE00000000000001F, 0xC00000000000003F, 0x800000000000007F,

0x00000000000000FF, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, Pr
el
im

in
ar

y

241 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0xFE00000000000000, 0xFC00000000000001, 0xF800000000000003, 0xF000000000000007,

0xE00000000000000F, 0xC00000000000001F, 0x800000000000003F, 0x000000000000007F,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xFC00000000000000, 0xF800000000000001, 0xF000000000000003, 0xE000000000000007,

0xC00000000000000F, 0x800000000000001F, 0x000000000000003F, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xF800000000000000, 0xF000000000000001, 0xE000000000000003, 0xC000000000000007,

0x800000000000000F, 0x000000000000001F, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xF000000000000000, 0xE000000000000001, 0xC000000000000003, 0x8000000000000007,

0x000000000000000F, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xE000000000000000, 0xC000000000000001, 0x8000000000000003, 0x0000000000000007,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, Pr
el
im

in
ar

y

242 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0xC000000000000000, 0x8000000000000001, 0x0000000000000003, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x8000000000000000, 0x0000000000000001, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000

};

 Pr
el
im

in
ar

y

243 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

6 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft® Excel® 15 Technical Preview

Microsoft® SQL Server® 2008 R2

Microsoft® SQL Server® 2012

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 2.1.2.3.1: Excel 15 Technical Preview restricts the collation name to a list of strings

that can be obtained by executing the following query against SQL Server 2008 R2:

SELECT * FROM FN:HELPCOLLATIONS() WHERE NAME NOT LIKE ‘SQL%’

<2> Section 2.1.2.3.1.1: Excel 15 Technical Preview accepts only strings that can be obtained by
executing the following query against SQL Server 2008 R2:

SELECT * FROM FN:HELPCOLLATIONS() WHERE NAME NOT LIKE ‘SQL%’

<3> Section 2.2.1: Excel 15 Technical Preview normalizes UserID as described in [MS-SSAS]

section 2.2.4.2.1.2.

<4> Section 2.2.2.2: Excel 15 Technical Preview generates a data source folder for the model. The
folder is empty.

<5> Section 2.3.1: Excel 15 Technical Preview assigns data identifiers in the order in which each
unique value is encountered in the source data.

<6> Section 2.3.1: Excel 15 Technical Preview uses partial sorting to optimize compression.

<7> Section 2.5.2.3.1: Excel 15 Technical Preview restricts the collation name to a list of strings
that can be obtained by executing the following query against SQL Server 2008 R2:

SELECT * FROM FN:HELPCOLLATIONS() WHERE NAME NOT LIKE ‘SQL%’

<8> Section 2.6.9: Excel 15 Technical Preview inserts the text for the command as stated in the

document. Pr
el
im

in
ar

y

%5bMS-SSAS%5d.pdf

244 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

Pr
el
im

in
ar

y

245 / 245

[MS-XLDM] — v20120122
 Spreadsheet Data Model File Format

 Copyright © 2012 Microsoft Corporation.

 Release: Sunday, January 22, 2012

8 Index

A

Applicability 12

C

Change tracking 244

D

Dictionary File example 222

E

Examples
Dictionary File 222
Multiple-Segment Column Data .idf File 220
tbl.xml Metadata File 206

F

Fields - vendor-extensible 13

G

Glossary 10

I

Implementer - security considerations 225
Index of security parameters 225
Informative references 11
Introduction 10

L

Localization 13

M

Multiple-Segment Column Data .idf File example
220

N

Normative references 11

O

Overview (synopsis) 12

P

Parameters - security index 225
Product behavior 243

R

References 11

informative 11
normative 11

Relationship to protocols and other structures 12

S

Security
implementer considerations 225
parameter index 225

T

tbl.xml Metadata File example 206
Tracking changes 244

V

Vendor-extensible fields 13
Versioning 13

Pr
el
im

in
ar

y

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 Storage Format of the Stream
	2.1.1 Spreadsheet Data Model Header
	2.1.1.1 Byte Order Mark
	2.1.1.2 Stream Storage Signature
	2.1.1.3 BackupLogHeaderType

	2.1.2 Files Section
	2.1.2.1 Partitions
	2.1.2.1.1 SdfPartitionType

	2.1.2.2 File Stream Format
	2.1.2.2.1 File End Markers
	2.1.2.2.1.1 CRC Marker

	2.1.2.3 Log File
	2.1.2.3.1 SdfBackupLogType
	2.1.2.3.1.1 SdfBackupLogCollationsType
	2.1.2.3.1.2 SdfBackupLogLanguagesType
	2.1.2.3.1.3 SdfFileGroupsType
	2.1.2.3.1.3.1 SdfFileGroupType
	2.1.2.3.1.3.1.1 SdfFileGroupClassEnum

	2.1.2.3.1.3.2 SdfFileListType
	2.1.2.3.1.3.3 SdfFileListBackupFileType

	2.1.2.3.1.4 WriteEnum

	2.1.2.4 CryptKey.bin File
	2.1.2.4.1 CryptKey.bin File Format
	2.1.2.4.1.1 CryptKey.bin Structures
	2.1.2.4.1.1.1 CryptKeyHeader
	2.1.2.4.1.1.2 Key BLOB
	2.1.2.4.1.1.2.1 PUBLICKEYSTRUC

	2.1.2.4.1.1.3 CryptKeyTrailer

	2.1.2.4.2 Creating an Exponent-of-One Private Key

	2.1.3 Virtual Directory
	2.1.3.1 VirtualDirectoryType
	2.1.3.2 VirtualDirectoryBackupFileType

	2.2 File Name Generation
	2.2.1 Top-Level Folder
	2.2.2 Top-Level Folders
	2.2.2.1 Cube Folder
	2.2.2.1.1 Cube Folder Folders
	2.2.2.1.1.1 Measure Group Folder
	2.2.2.1.1.1.1 Measure Group Folder Folders
	2.2.2.1.1.1.1.1 Partition Folder Files

	2.2.2.1.1.1.2 Measure Group Folder Files

	2.2.2.1.2 Cube Folder Files
	2.2.2.1.2.1 Cube Information File
	2.2.2.1.2.2 MDX Script Metadata File
	2.2.2.1.2.3 Measure Group Metadata File

	2.2.2.2 Data Source Folder
	2.2.2.3 Dimension Folder
	2.2.2.3.1 Metadata Files
	2.2.2.3.1.1 Table Metadata Files
	2.2.2.3.1.2 Table Information File
	2.2.2.3.1.3 Table Relationship File
	2.2.2.3.1.4 Column Hierarchy Files
	2.2.2.3.1.5 User Hierarchy Metadata File

	2.2.2.3.2 Data Files
	2.2.2.3.2.1 Column Data Files
	2.2.2.3.2.2 Table Relationship Index File
	2.2.2.3.2.3 Column Hierarchy Position–to–Identifier File
	2.2.2.3.2.4 Column Hierarchy Identifier–to–Position File
	2.2.2.3.2.5 Column Hierarchy Hash Table
	2.2.2.3.2.6 Column Hierarchy Dictionary
	2.2.2.3.2.7 User Hierarchy Files
	2.2.2.3.2.7.1 Child Count File
	2.2.2.3.2.7.2 First Child Position File
	2.2.2.3.2.7.3 Parent Position File
	2.2.2.3.2.7.4 Multilevel Identifier File

	2.3 Storage of Data Values
	2.3.1 Column Data Storage
	2.3.1.1 File Layout for Column Data Storage Files
	2.3.1.1.1 General Layout of an .idf File
	2.3.1.1.2 General Layout of an .idf File That Uses Hybrid Compression
	2.3.1.1.3 Segment Size Limitations for .idf Files

	2.3.2 Column Data Dictionary
	2.3.2.1 File Layout for a Column Data Dictionary
	2.3.2.1.1 XM_TYPE_LONG and XM_TYPE_REAL Data Dictionary Files
	2.3.2.1.1.1 Required Hash Elements
	2.3.2.1.1.2 Vector of Values

	2.3.2.1.2 XM_TYPE_STRING Data Dictionary Files
	2.3.2.1.2.1 BLOBs and Base64 Encoding
	2.3.2.1.2.2 Required Hash Elements
	2.3.2.1.2.3 Dictionary Page Layout
	2.3.2.1.2.4 Dictionary String Store (Per Page) Information
	2.3.2.1.2.4.1 Uncompressed Page Case
	2.3.2.1.2.4.2 Compressed Page Case
	2.3.2.1.2.4.3 Second Mark (End of Page Marker)

	2.3.2.1.2.5 Dictionary Record Handles Vector

	2.3.2.1.3 Dictionary Structures, Enumerations, and Constants
	2.3.2.1.3.1 XM_TYPE Enumeration
	2.3.2.1.3.2 Page Size Limitations for an XM_TYPE_STRING Hash Data Dictionary
	2.3.2.1.3.3 Page Mask for an XM_TYPE_STRING Hash Data Dictionary
	2.3.2.1.3.4 Huffman Character Set Mode
	2.3.2.1.3.5 Record Handle Structures for an XM_TYPE_STRING Hash Data Dictionary

	2.3.3 Column Data Hierarchy Hash Index
	2.3.3.1 File Layout for Hash Index Files
	2.3.3.1.1 Required Elements for All Files That Use Hashing
	2.3.3.1.2 Required Elements for Hash Index Files
	2.3.3.1.2.1 Records and Hash Statistics
	2.3.3.1.2.2 Hash Bin Entries
	2.3.3.1.2.3 Overflow Hash Entries

	2.3.3.1.3 Hashing Algorithms
	2.3.3.1.4 Hash Structures, Enumerations and Constants
	2.3.3.1.4.1 XM_HASH_BIN_VECTOR_INVALID_BIN_COUNT
	2.3.3.1.4.2 Hash Algorithm Enumeration and Constant
	2.3.3.1.4.3 Hash Bin Bucket Size Minimums
	2.3.3.1.4.4 HashBin Structure
	2.3.3.1.4.5 HashEntry Structure
	2.3.3.1.4.6 XM_HASH_ENTRY_COUNT_PER_BIN

	2.3.4 RowNumber Column
	2.3.4.1 File Layout for the RowNumber Column

	2.4 System-Generated Data Files
	2.4.1 Column Data Position–to–Identifier Mapping
	2.4.1.1 File Layout for Column Data Position–to–Identifier Mapping File

	2.4.2 Column Data Identifier–to–Position Mapping
	2.4.2.1 File Layout for Column Data Identifier–to–Position Mapping File

	2.4.3 Relationship Index
	2.4.3.1 File Layout for Relationship Index File

	2.4.4 User Hierarchy System-Generated Files
	2.4.4.1 User Hierarchy Child Count
	2.4.4.1.1 File Layout for User Hierarchy Child Count

	2.4.4.2 User Hierarchy First Child Position
	2.4.4.2.1 File Layout for User Hierarchy First Child Position

	2.4.4.3 User Hierarchy Multilevel Identifier
	2.4.4.3.1 File Layout for User Hierarchy Multilevel Identifier

	2.4.4.4 User Hierarchy Parent Position
	2.4.4.4.1 File Layout for User Hierarchy Parent Position

	2.5 Metadata Files
	2.5.1 XMObject Document Node Element
	2.5.1.1 XMObjectPropertiesType
	2.5.1.2 XMObjectMembersType
	2.5.1.3 XMObjectCollectionsType
	2.5.1.4 XMObjectDataObjectsType
	2.5.1.5 XMObjectMemberType
	2.5.1.6 XMObjectCollectionType
	2.5.1.7 XMObjectDataObjectType
	2.5.1.8 XMObjectMemberNameEnum
	2.5.1.9 XMObjectCollectionNameEnum
	2.5.1.10 XMObjectClassNameEnum

	2.5.2 XMObject Definitions by class Attribute
	2.5.2.1 XMObject class="XMSimpleTable"
	2.5.2.1.1 XMSimpleTablePropertiesType
	2.5.2.1.2 XMSimpleTableMembersType
	2.5.2.1.2.1 XMSimpleTableMemberType
	2.5.2.1.2.2 XMSimpleTableMemberNameEnum
	2.5.2.1.2.3 XMSimpleTableXMObjectMemberClassNameEnum

	2.5.2.1.3 XMSimpleTableCollectionsType
	2.5.2.1.3.1 XMSimpleTableCollectionType
	2.5.2.1.3.2 XMSimpleTableCollectionNameEnum
	2.5.2.1.3.3 XMSimpleTableXMObjectCollectionClassNameEnum

	2.5.2.2 XMObject class="XMTableStats"
	2.5.2.2.1 XMTableStatsPropertiesType

	2.5.2.3 XMObject class="XMRawColumn"
	2.5.2.3.1 XMRawColumnPropertiesType
	2.5.2.3.2 XMRawColumnMembersType
	2.5.2.3.2.1 XMRawColumnMemberType
	2.5.2.3.2.2 XMRawColumnMemberNameEnum
	2.5.2.3.2.3 XMRawColumnXMObjectMemberClassNameEnum

	2.5.2.3.3 XMRawColumnCollectionsType
	2.5.2.3.3.1 XMRawColumnCollectionType

	2.5.2.3.4 XMRawColumnDataObjectsType
	2.5.2.3.4.1 XMRawColumnDataObjectType
	2.5.2.3.4.2 XMRawColumnXMObjectDataClassNameEnum

	2.5.2.4 XMObject class="XMRelationship"
	2.5.2.4.1 XMRelationshipPropertiesType
	2.5.2.4.2 XMRelationshipDataObjectsType
	2.5.2.4.3 XMRelationshipDataObjectType
	2.5.2.4.4 XMRelationshipXMDataObjectXMObjectClassNameEnum

	2.5.2.5 XMObject class="XMRelationshipIndexSparseDIDs"
	2.5.2.5.1 XMRelationshipIndexSparseDIDsPropertiesType

	2.5.2.6 XMObject class="XMRelationshipIndexDenseDIDs"
	2.5.2.6.1 XMRelationshipIndexDenseDIDsPropertiesType

	2.5.2.7 XMObject class="XMRelationshipIndex123DIDs"
	2.5.2.8 XMObject class="XMColumnStats"
	2.5.2.8.1 XMColumnStatsPropertiesType

	2.5.2.9 XMObject class="XMHierarchy"
	2.5.2.9.1 XMHierarchyPropertiesType

	2.5.2.10 XMObject class="XMUserHierarchy"
	2.5.2.10.1 XMUserHierarchyPropertiesType

	2.5.2.11 XMObject class="XMHierarchyDataID2PositionHashIndex"
	2.5.2.12 XMObject class="XMColumnSegment"
	2.5.2.12.1 XMColumnSegmentPropertiesType
	2.5.2.12.2 XMColumnSegmentMembersType
	2.5.2.12.2.1 XMColumnSegmentMemberType
	2.5.2.12.2.2 XMColumnSegmentMemberNameEnum
	2.5.2.12.2.3 XMColumnSegmentXMObjectMemberClassNameEnum

	2.5.2.13 XMObject class="XMPartition"
	2.5.2.13.1 XMPartitionPropertiesType

	2.5.2.14 XMObject class="XMMultiPartSegmentMap"
	2.5.2.14.1 XMMultiPartSegmentMapPropertiesType
	2.5.2.14.2 XMMultiPartSegmentMapCollectionsType
	2.5.2.14.3 XMMultiPartSegmentMapCollectionType
	2.5.2.14.3.1 XMMultiPartSegmentMapXMObjectCollectionClassNameEnum

	2.5.2.15 XMObject class="XMSegment1Map"
	2.5.2.15.1 XMSegment1MapPropertiesType

	2.5.2.16 XMObject class="XMSegmentEqualMapEx<XMSegmentEqualMap_FastInstantiation>"
	2.5.2.16.1 XMSegmentEqualMapEx_PropertiesType

	2.5.2.17 XMObject class="XMSegmentEqualMapEx<XMSegmentEqualMap_ComplexInstantiation>"
	2.5.2.18 XMObject class="XMValueDataDictionary<XM_Long>"
	2.5.2.18.1 PropertiesValueDictionaryType

	2.5.2.19 XMObject class="XMValueDataDictionary<XM_Real>"
	2.5.2.20 XMObject class="XMHashDataDictionary<XM_Real>"
	2.5.2.20.1 HashDictionaryAttributeGroup
	2.5.2.20.2 PropertiesHashDictionaryRealType

	2.5.2.21 XMObject class="XMHashDataDictionary<XM_Long>"
	2.5.2.21.1 PropertiesHashDictionaryLongType

	2.5.2.22 XMObject class="XMHashDataDictionary<XM_String>"
	2.5.2.22.1 PropertiesHashDictionaryStringType

	2.5.2.23 XMObject class="XMRENoSplitCompressionInfo<1>"
	2.5.2.23.1 XMRENoSplitCompressionInfoPropertiesType

	2.5.2.24 XMObject class="XMRENoSplitCompressionInfo<2>"
	2.5.2.25 XMObject class="XMRENoSplitCompressionInfo<3>
	2.5.2.26 XMObject class="XMRENoSplitCompressionInfo<4>
	2.5.2.27 XMObject class="XMRENoSplitCompressionInfo<5>
	2.5.2.28 XMObject class="XMRENoSplitCompressionInfo<6>
	2.5.2.29 XMObject class="XMRENoSplitCompressionInfo<7>
	2.5.2.30 XMObject class="XMRENoSplitCompressionInfo<8>
	2.5.2.31 XMObject class="XMRENoSplitCompressionInfo<9>
	2.5.2.32 XMObject class="XMRENoSplitCompressionInfo<10>
	2.5.2.33 XMObject class="XMRENoSplitCompressionInfo<12>
	2.5.2.34 XMObject class="XMRENoSplitCompressionInfo<16>
	2.5.2.35 XMObject class="XMRENoSplitCompressionInfo<21>
	2.5.2.36 XMObject class="XMRENoSplitCompressionInfo<32>"
	2.5.2.37 XMObject class="XM123CompressionInfo"
	2.5.2.38 XMRLECompressionInfo
	2.5.2.38.1 XMRLECompressionInfoPropertiesType

	2.5.2.39 XMObject class="XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<1>>"
	2.5.2.39.1 XMHybridRLECompressionInfoMembersType
	2.5.2.39.2 XMHybridRLECompressionInfoMemberType
	2.5.2.39.3 XMHybridRLECompressionInfoMemberNameEnum
	2.5.2.39.4 XMHybridRLECompressionInfoXMObjectClassNameEnum

	2.5.2.40 XMObject class="XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<2>>"
	2.5.2.41 XMObject class="XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<3>>"
	2.5.2.42 XMObject class="XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<4>>"
	2.5.2.43 XMObject class="XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<5>>"
	2.5.2.44 XMObject class="XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<6>>"
	2.5.2.45 XMObject class="XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<7>>"
	2.5.2.46 XMObject class="XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<8>>"
	2.5.2.47 XMObject class="XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<9>>"
	2.5.2.48 XMObject class="XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<10>>"
	2.5.2.49 XMObject class="XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<12>>"
	2.5.2.50 XMObject class="XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<16>>"
	2.5.2.51 XMObject class="XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<21>>"
	2.5.2.52 XMObject class="XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<32>>"
	2.5.2.53 XMObject class="XMHybridRLECompressionInfo<class XM123CompressionInfo>"
	2.5.2.54 XMObject class="ColumnSegmentStats"
	2.5.2.54.1 XMColumnSegmentStatsPropertiesType

	2.5.2.55 XMObject class="XMRawColumnPartitionDataObject"
	2.5.2.55.1 XMRawColumnPartitionDataObjectPropertiesType

	2.5.3 Contents of the .tbl.xml Files

	2.6 Model OLAP Files
	2.6.1 Load Element Document Node
	2.6.1.1 MajorObjectTabularModel
	2.6.1.2 ObjectReferenceTabularModel
	2.6.1.3 TabularModelElementsGroup Group

	2.6.2 DataSourceTabularModel
	2.6.3 DataSourceViewTabularModel
	2.6.4 DatabaseTabularModel
	2.6.5 CubeTabularModel
	2.6.6 DimensionTabularModel
	2.6.7 MeasureGroupTabularModel
	2.6.8 PartitionTabularModel
	2.6.9 MdxScriptTabularModel
	2.6.10 OLAP Information Files
	2.6.10.1 Partition Information File
	2.6.10.1.1 PartitionInformationType

	2.6.10.2 Dimension Information File
	2.6.10.2.1 DimensionInformationType
	2.6.10.2.1.1 DimensionInformationPropertiesType
	2.6.10.2.1.1.1 DimensionInformationPropertyType
	2.6.10.2.1.1.2 DimensionInformationMapDataSetType

	2.6.10.3 Cube Information File
	2.6.10.3.1 CubeInformationType

	2.7 Compression
	2.7.1 XMRENoSplit Compression Algorithms
	2.7.1.1 XMRENoSplitCompressionInfo<1>
	2.7.1.2 XMRENoSplitCompressionInfo<2>
	2.7.1.3 XMRENoSplitCompressionInfo<3>
	2.7.1.4 XMRENoSplitCompressionInfo<4>
	2.7.1.5 XMRENoSplitCompressionInfo<5>
	2.7.1.6 XMRENoSplitCompressionInfo<6>
	2.7.1.7 XMRENoSplitCompressionInfo<7>
	2.7.1.8 XMRENoSplitCompressionInfo<8>
	2.7.1.9 XMRENoSplitCompressionInfo<9>
	2.7.1.10 XMRENoSplitCompressionInfo<10>
	2.7.1.11 XMRENoSplitCompressionInfo<12>
	2.7.1.12 XMRENoSplitCompressionInfo<16>
	2.7.1.13 XMRENoSplitCompressionInfo<21>
	2.7.1.14 XMRENoSplitCompressionInfo<32>

	2.7.2 XM123 Compression Algorithm
	2.7.2.1 XM123CompressionInfo

	2.7.3 XMHybridRLE Compression Algorithms
	2.7.3.1 Conceptual Overview of RLE Entries and Bit-Packing Entries
	2.7.3.2 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<1>>
	2.7.3.3 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<2>>
	2.7.3.4 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<3>>
	2.7.3.5 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<4>>
	2.7.3.6 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<5>>
	2.7.3.7 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<6>>
	2.7.3.8 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<7>>
	2.7.3.9 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<8>>
	2.7.3.10 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<9>>
	2.7.3.11 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<10>>
	2.7.3.12 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<12>>
	2.7.3.13 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<16>>
	2.7.3.14 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<21>>
	2.7.3.15 XMHybridRLECompressionInfo<class XMRENoSplitCompressionInfo<32>>
	2.7.3.16 XMHybridRLECompressionInfo<class XM123CompressionInfo>

	2.7.4 Huffman Compression
	2.7.4.1 Huffman Implementation Constraints
	2.7.4.1.1 Classical Unbalanced Huffman Tree
	2.7.4.1.2 Minimum and Maximum Codeword Sizes
	2.7.4.1.3 Huffman Alphabet Size
	2.7.4.1.4 Single and Multiple Character Set Modes
	2.7.4.1.5 Huffman Information Provided in an XM_TYPE_STRING Dictionary

	2.7.4.2 Conceptual Overview of a Huffman Tree

	2.7.5 Xpress Compression

	3 Structure Examples
	3.1 tbl.xml Metadata File
	3.2 Multiple-Segment Column Data .idf File
	3.3 Dictionary File

	4 Security
	4.1 Security Considerations for Implementers
	4.2 Index of Security Parameters

	5 Appendix A: Compression Mask for XMRENoSplit Compression Algorithms
	6 Appendix B: Product Behavior
	7 Change Tracking
	8 Index

