IMS-PATCH]: LZX DELTA Compression and
Decompression

Intellectual Property Rights Notice for Protocol Documentation

e Copyrights. This protocol documentation is covered by Microsoft copyrights.
Regardless of any other terms that are contained in the terms of use for the
Microsoft website that hosts this documentation, you may make copies 6f it n
order to develop implementations of the protocols, and may distribute portions of
it in your implementations of the protocols or your documentation as‘meeessary to
properly document the implementation. This permission also appliesto any
documents that are referenced in the protocol documentationt

4

e No Trade Secrets. Microsoft does not claim any tradessecret rights in this

documentation.

e Patents. Microsoft has patents that may cover your implementations of the
protocols. Neither this notice nor Microsoft's delivery of the documentation grants
any licenses under those or any other Microsoft patents: Hewever, the protocols
may be covered by Microsoft’s OpenfSpeeification Promise (available here:
http://www.microsoft.com/interop/0sp/default. mspx). If you would prefer a
written license, or if the protocel§iare not covered by the OSP, patent licenses are
available by contacting proto€ol@microsoft.com.

e Trademarks. The names of companies and products contained in this
documentation maye,coveredbytrademarks or similar intellectual property
rights. This netice does net grant anylicenses under those rights.

Reservation of Rights.” Al other rights are reserved, and this notice does not grant any
rights other thand specifically described above, whether by implication, estoppel, or
otherwise.

Preliminary Documentation. This documentation is preliminary documentation for these
protocols., Since the.doéiimentation may change between this preliminary version and the
final version, there are risks in relying on preliminary documentation. To the extent that you
incur additional development obligations or any other costs as a result of relying on this
preliminary documentation, you do so at your own risk.

Tools. This protocol documentation is intended for use in conjunction with publicly available
standard specifications and networking programming art, and assumes that the reader is either
familiar with the aforementioned material or has immediate access to it. A protocol
specification does not require the use of Microsoft programming tools or programming
environments in order for a Licensee to develop an implementation. Licensees who have
access to Microsoft programming tools and environments are free to take advantage of them.

1of24
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

http://www.microsoft.com/interop/osp/default.mspx
mailto:protocol@microsoft.com

Revision Summary
Author Date Version | Comments
Microsoft April 4, 0.1 Initial Availability

o\Q
.@

[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

20f24

Table of Contents

1 Introduction 4
LT GLOSSAIY ..ttt ettt ettt s et s e st a e st esesansesesasensesesenennes 4
| B 2 (<) (=) 1 o1t 4
1.2.1 NOrmMative REETENCEScuoovieiieiiiietieeeeeeeeeeeee ettt
1.2.2 Informative REFEIENCESc.ccvevivieeierieiietieteeeeeeeeeeeeteeteeteet et eaens
2 Description
2.1 | 40 1 OO RR !
2.2 LZX ettt ettt ettt et ereeteeseeneerensensens to et ereerenns
2 TR 745 € D T OO UOUUUROTRTRNG. 41 SO
S 5 31731 ¢~ 4 DO R ...
2.5 WINAOW SIZE ..oovvvierieriereereeeeeeeeeeeeeeteeveeteeveeveeeeeeeeese e esee s oliene e
2.6 Reference Datacoooeevieviieieieieeeeeeeee e e .
2.7 HUTTMAN TTCES....cueiuiieietieieeieeteeeeeeeeeeeetee ettt a8 e e et e ersehtb e eneeseene
2.8 POSIION SIOt.....c.oouiieicrieririeeeeeeeeeeeeeeveeeeveeeeeeesee il ns L. ...
2.9 Repeated OffSets........ccoreerrereenreeeneeeeeeee i b s A
210 Match Lengths.....ooooveoosorororoe Q.. Qi 8
2.11 E8 Call Translation............cooveeveeveeveeeeeeee i sss e ceveeveeseveeseneeneeseeseeseeseeneens 8

2,12 CHUNK SIZE....oevieieeeeeeeeeeeeeeeeeeeeeeeee e e tBan e ete e v reaeerenseseaserensesennns 10
213 BIOCK HEACT ... e B ittt eve e 11
2.14 BIOCK TYPE w.oveveeiiereeiiieieeieieieeee bt egsa B s ettt bttt senanes 11
2,15 BIOCK SIZ@...evoeeeeieeeeieeeeee st trese B ettt eae s 11
2.15.1
2.15.2

2.153 13
2154 13
2.15.5 14
2.15.6 15

2.15.7 .. 16

18

2.17.1 Decoding Matches and Literals (Aligned and Verbatim Blocks)..................... 20
Protocol Examples 21
[ppendix A: Office/Exchange Behavior 22
In 23

3o0f24
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

1 Introduction

LZX is an LZ77-based Microsoft compression engine described in the Microsoft Cabinet

SDK. LZXD (D for Delta) is a derivative of the Microsoft Cabinet LZX format with some
modifications to facilitate efficient delta compression. Delta compression is a technique in
which one set of data can be compressed within the context of a reference set of data that
is supplied both to the compressor and decompressor. Delta compression is commonly
used to encode updates to similar existing data sets so that the size of compressed
be significantly reduced relative to ordinary non-delta compression techniques
a delta-compressed set of data requires that the exact same reference data b
during decompression.

1.1 Glossary

The following terms are specific to this document:

MAY, SHOULD, MUST, SHOULD NOT, MUST NO
as described in [RFC2119]. All statemefifs i er MAY,
SHOULD, or SHOULD NOT.

1.2 References

1.2.1 Normative References
[MS-OXGLOS] Microsoft Corporati rotocols Master Glossary", April

2008. ‘

77 refers to the well-known Lempel-Ziv 1977 sliding window data compression algorithm.

40f24
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

http://www.ietf.org/rfc/rfc2119.txt

2.2 L7ZX

LZX is an LZ77-based compressor that uses static Huffman encoding and a sliding window of
selectable size. LZX is most commonly known as part of the Microsoft Cabinet compression
format. Data symbols are encoded either as an uncompressed symbol, or as a logical (offset,
length) pair indicating that length symbols shall be copied from a displacement of offset
symbols from the current position in the output stream. The value of offset is constrained to be
less than the current position in the output stream, up to the size of the sliding window;

2.3 LZXD

LZXD is an LZX variant modified to facilitate efficient delta-compressiod. EZXD,provides a
mechanism for both compressor and decompressor to refer to a commof reference set of data,
and relaxes the constraint that match offset be constrained to less than the'cunfent positionﬁq
the output stream, allowing match offset to refer to the logically pfépended feference data.
This effectively enables the compressed data stream to encode “matches® bothifroni the
reference data and from the uncompressed data stream.

2.4 Bitstream

An LZXD Bitstream is encoded as a sequencg of aligned 16-bit integers stored in the order
least-significant-byte most-significant-byte, also known as bytesswapped or little-endian
words. Given an input stream of bits nafied a, b, c, ..., X, ¥z, A, B, C, D, E, F, the output
byte stream (with byte boundaries highlighted) weould be as'shown below.

i|j|k|Linmnjo|lpla|bpc|d elfhe hly|ZlABCDE Fq|r|S|[t|ulviwx

2.5 Window Size

The sliding wifidow siz€ MUST be a power of 2, from 2" (128 KB) up to 2% (32 MB). The
window size is not stored in the compressed data stream, and MUST be specified to the
decoder (betore decading begins. The preferred window size is the smallest power of two
between2'’ and 2 thatis greater than or equal to the sum of the size of the reference data
roundedupyto multiple of 32,768 and the size of the subject data.

2.6 Reference Data

Fondelta compression, the reference data is a sequence of bytes given to the compressor prior
to ecompressing the subject data. The exact same reference data sequence MUST be given to
the decompressor prior to decompression. The reference data sequence is treated as logically
prepended to the subject data sequence being compressed or decompressed. During
decompression, match offsets are negative displacements from the “current position” in the
50f24
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

output stream, up to the specified Window Size. When match offset values exceed the number
of bytes already emitted in the uncompressed output stream, they are simply pointing into the
reference data that is logically prepended to the subject data.

Offset |0 |1 |2 [3 [4[5]/6 |7 [8(9]10]11 12|13 |14 [15]16|17 |18

19

Value |A|B|C|D|E|F|G|H|I|J|a |b |c |[DI|E |F |a |[b |c

Reference Data Sequence Subject Data Sequence

In this example, the reference data is 10 bytes long and consists of the sequence
“ABCDEFGHIJ”. The data to be compressed, or the subject data, is also 10 bytes long
(although the data does not need to be the same length as the reference data) and‘¢onsists of
“abcDEFabce”. A valid encoded sequence would consist of the followingdokens:

‘a’, ‘b’, ‘c’, (match offset -10, length 3), (match offset -6, length 3), ‘¢’ ¢

The first match offset exceeds the amount of subject data already 1n thewindow, peinting
instead into the reference data portion. The second match offset does not exceed the amount of
subject data in the window and instead refers to@ portion of'thé,subject data previously
compressed or decompressed.

2.7 Huffman Trees

LZXD uses canonical Huffman tree struéturésto representielements. Huffman trees are well
known in data compression and are not described here. Because an LZXD decoder uses only
the path lengths of the Huffman tre€ to reconstruct the identical tree, the following constraints
are made on the tree structure.

For any two elementsiwith the same path length, the lower-numbered element MUST be
further left on the tree'than the highetmumbered element. An alternative way of stating this
constraint is that lower-numbered elements MUST have lower path traversal values; for
example, 0010 (eft-left-right-left) is lower than 0011 (left-left-right-right).

For each Jevel, startig at the/deepest level of the tree and then moving upwards, leaf nodes
MUST start as far left as possible. An alternative way of stating this constraint is that if any
treemode has children then all tree nodes to the left of it with the same path length MUST also
have children.

A non-empty Huffman tree MUST contain at least 2 elements, so in the case where all but one
ttee element has zero frequency, the resulting tree MUST minimally consist of two Huffman
codes, “0” and “1”.

LZXD uses several Huffman tree structures. The Main Tree comprises 256 elements

corresponding to all possible 8-bit characters, plus 8§ * NUM_POSITION_SLOTS elements

corresponding to matches. The value of NUM_POSITION SLOTS depends on the specified

window size as described in the next section. The Length Tree comprises 249 elements. Other
6of24

[MS-PATCH] - v0.1

LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

trees, such as the Aligned Offset Tree (comprising 8 elements), and the Pre-Trees (comprising
20 elements each), have a smaller role.

2.8 Position Slot

The window size determines the number of window subdivisions, or “position slots”, as
shown in the following table:

Window Size/Position Slot Table

Window size Position slots required

128 KB 34

256 KB 36

512KB 38 4
1 MB 42

2 MB 50

4 MB 66

8 MB 98

16 MB 162

32 MB 290

2.9 Repeated Offsets

LZXD extends the convéntional LZ77 format in seyeral ways, one of which is in the use of
repeated offset codes. Three match offset éedes, named the repeated offset codes, are reserved
to indicate that the{ebrrent matchioffset is the'same as that of one of the three previous
matches which is notitself a repeated offset.

The three special@ffset codesiare encoded as offset values 0, 1, and 2 (for example, encoding
an offset of 0 means “use the most recent non-repeated match offset”, an offset of 1 means
“use the second mostecent ndn-repeated match offset”, etc.). All remaining offset values are
displaced by +3, as is shown/in the table below, which prevents matches at offsets

WINDOW SIZE;WINDOW SIZE-1, and WINDOW _SIZE-2.

Correlation Between Encoded Offset and Real Offset
Encoded offset Real offset

0 Most recent real match offset

1 Second most recent match offset
2 Third most recent match offset

3 1 (closest allowable)

4 2

5 3

7 0f 24
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

e IEN] o))
N|n |~

500 498

X+2 X

WINDOW _SIZE-1 WINDOW _SIZE-3
(maximum possible)

The three most recent real match offsets are kept in a list, the behavior of which explained
below:

Let RO be defined as the most recent real offset
Let R1 be defined as the second most recent offset
Let R2 be defined as the third most recent offset L 3

The list is managed similarly to an LRU (least recently used) queue, with the exception of the
cases when R1 or R2 is output. In these cases, R1 or R2 is simply swappedwwith RO, which
requires fewer operations than would an LRU q@eue.

The initial state of RO, R1, R2is (1, 1, 1).

Management of the Repeated Offsets List

Match offset X where... Operation
X #R0and X #R1 and X # R2 R2 <~ R1

RT <« RO

RO <X
X=R0 None
X=R1 swap RO < R1
X=R2 swap RO < R2

2.10 Match Lengths

Theminimum mateh léngth (number of bytes) encoded by LZXD is 2 bytes, and the
maximum match length is 32,768 bytes. However, no match of any length can span a modulo-
32 KB boundary in the uncompressed stream. Match length encoding is combined with match
position encodingas described in the Compressed Token Sequence section below.

2.11 E8 Call Translation

E8'Call Translation is an optional feature that is sometimes used when the data to compress
contains x86 instruction sequences. E§ Translation operates as a pre-processing stage prior to
compressing each chunk, and the compressed stream header contains a bit that indicates

8of24
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

whether the decoder shall reverse the translation as a post-processing step after decompressing
each chunk.

The x86 instruction beginning with a byte value of 0xES is followed by a 32-bit little-endian
relative displacement to the call target. When E8 Call Translation is enabled, the following
pre-processing step is performed on the uncompressed input prior to compression (assuming
little-endian byte ordering):

Let chunk offset refer to the total number of uncompressed bytes preceding this ch

Let E8 file size refer to the caller-specified value given to the compressor or dec
the header of the compressed stream during decompression.

For each 32 KB chunk of uncompressed data (or less than 32 KB if last ch

if ((chunk offset < 0x40000000) && (chunk si
for (1 =0; 1 < (chunk size - 10); i++)

if (chunk byte[1] == 0xE8)
long current pointer = chunk o
long displacement = chunk

\ 4

long target = current p
if ((target >= 0
E8 file size+cur
if |
_file size;
target);
target >> 8);

target >> 16);
target >> 24);

90f24

[MS-PATCH] - v0.1

LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

After decompression, the E8 scanning algorithm is the same, but the translation reversal is:

long value = chunk byte[i+l]
chunk byte[i+2] << 8 |
chunk byte[i+3] << 16 |
chunk byte[i+4] << 24;
if ((value >= -current pointer) && (value <
E8 file size))
if ((value >= 0)
displacement = value - current pointer;
else
displacement = value + E8 file size;
endif
chunk byte[i+1] = (byte) (displacement™);
chunk byte[i+2] = (byte) (displagement >> 8))%
chunk byte[i+3] = (byte) (displacementf >> 16);‘
chunk byte[i+4] = (byte) (displacement >> 247)5
endif

The first bit in the first Chunk in the LZXD bitstream (folléwing the 2-byte Chunk Size prefix
described below) indicates the presence or absenee of two 16<bit fields immediately following
the single bit. If the bit is set, E8 translation is enabledusing the32sbit value derived from the
two 16-bit fields as the E8 file size provided to the compressor whemES translation was
enabled. Note that E8 file size is completelydndependent of the length of the uncompressed
data. E8 call translation is always disabled after the 32,7268™ ehunk (after 1 GB of
uncompressed data).

Field Comments Size
ES8 translation 0-disabled, 1-enabled | 1 bit
Translation siZe high wordyj, Only present if enabled | 0 or 16 bits
Translation size low word | Only present if enabled | 0 or 16 bits

2.12 Chunk/Size

The LZXD compressor emits chunks of compressed data, each of which represents exactly 32
KB, of uncompressed datauntil the last chunk in the stream, which can represent less than 32
KB: In order to ensure that an exact number of input bytes represent an exact number of
output bytes for each chunk, after each 32 KB of uncompressed data is represented in the
output compressed bitstream, the output bitstream is padded with up to 15 bits of zeros to re-
align the bitstream on a 16-bit boundary (even byte boundary) for the next 32 KB of data. This
results in a compressed chunk of a byte-aligned size. The compressed chunk could be
significantly smaller than 32 KB or possibly larger than 32 KB if the data is incompressible.

The LZXD engine encodes a byte-aligned little-endian 16-bit compressed chunk size prefix

field preceding each compressed chunk in the compressed byte stream. The chunk prefix

chain could be followed in the compressed stream without decompressing any data. The next
100f24

[MS-PATCH] - v0.1

LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

chunk prefix is at location computed by absolute byte offset location of this chunk prefix plus
2 (for the size of the chunk size prefix field) plus the current chunk size.

2.13 Block Header

An LZXD Block represents a sequence of compressed data that is encoded with the same set
of Huffman trees, or a sequence of uncompressed data. There can be one or more LZXD
Blocks in a compressed stream, each with its own set of Huffman trees. Blocks needynot stait
or end on a chunk boundary; blocks can span multiple chunks, or a single chunk can contain
multiple blocks. The Block Type field indicates which type of block follows, and the Block
Size field indicates the number of uncompressed bytes represented by the blockEollowing the
generic Block Header, there is a type-specific header describing the remainder of the bloek.

4

Field Comments Size

Block Type See valid values below 3 bits
Block Size MSB | Block size high 8 bits of 24 8 bits
Block Size byte 2 | Block size middle 8 bits 0f 24 | 8 bits
Block Size LSB | Block size low 8 bits of 24 8 bits

2.14 Block Type

Each block of compressed data begins with a 3=bit field indicating the block type, followed by
the Block Size and then g§pe-specifi¢ Block Data:Of the eight values possible, only three are
valid types:

Bits Value | Meaning

001 1 Verbatim block
010 2 Aligned offset block
011 3 Uncempressed block

other |0, 4-7\| InVvalid

2.15 Block Size

Thée Block Sizefield indicates the number of uncompressed bytes represented by the block.
The maximum Block Size is 22*-1 (16MB-1 or 0x00FFFFFF). The Block Size is encoded in
the bitstream as three 8-bit fields comprising a 24-bit value, most significant to least
significant, immediately following the Block Type encoding.

11024
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

2.15.1 Uncompressed Block

Following the generic Block Header, an uncompressed block begins with 1 to 16 bits of zero
padding to align the bit buffer on a 16-bit boundary. At this point, the bitstream ends, and a
byte stream begins. Following the zero padding, new 32-bit values for RO, R1, and R2 are
output in little-endian form, followed by the uncompressed data bytes themselves. Finally, if
the uncompressed data length is odd, one extra byte of zero padding is encoded to re-align the
following bitstream.

Field Comments Size
Padding to align following field on 16-bit | Bits have value of zero Variable,
boundary 1..16 bits

Then, the following fields are then encoded directly in the byte stream, NOT the bitstreanto
byte-swapped 16-bit words:

RO LSB to MSBd(little endian‘dword) 4 bytes

R1 LSB'to MSB (little endian dword) 4 bytes

R2 LSB teMSB (little éndian dword) 4 bytes
Uncompressed raw data bytes Can use direct memcpy 1..27-1 bytes
Padding to re-align bitstream Only if uncompressed size is odd 0 or 1 byte

Then the bitstream of byte-swapped 16bitintegers resumesyfor the next Block Type field (if
there are subsequent blocks).

The decoded RO, R1, and'R2 yalues are used as initial Repeated Offset values to decode the
subsequent compressed block if present.

2.15.2 Verbatim Block

A verbatim blo€k consists of'the,following fields following the generic block header:

Entry Comments Size
Pre-tfee for first 256elemeénts of main tree 20 elements, 4 bits each 80 bits
Pathlengths of first 256 elements of main tree Encoded using pre-tree Variable
Prestree for temainder of main tree 20 elements, 4 bits each 80 bits
Path lengths of temaining elements of main tree Encoded using pre-tree Variable
Pre-tree for length tree 20 elements, 4 bits each 80 bits
Path lengths of elements in length tree Encoded using pre-tree Variable
Token sequence (matches and literals) Described later Variable
120f24

[MS-PATCH] - v0.1

LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

2.15.3 Aligned Offset Block

An aligned offset block consists of the following, the only difference from Verbatim header
being the existence of the Aligned Offset Tree preceding the other trees.

Entry Comments Size
Aligned offset tree 8 elements, 3 bits each 24 bits
Pre-tree for first 256 elements of main tree 20 elements, 4 bits each 80 bits
Path lengths of first 256 elements of main tree Encoded using pre-tree Variable
Pre-tree for remainder of main tree 20 elements, 4 bits each 80 bits
Path lengths of remaining elements of main tree Encoded using pre-tree Variable
Pre-tree for length tree 20 elements, 4 bits@ach 80 bits
Path lengths of elements in length tree Encoded using pte-tree Variable
Token sequence (matches and literals) Described later riable

2.15.4 Encoding the Trees and Pre-Trees

Because all trees used in LZXD are created in the fotmhof a canoniéal Huffiman tree, the path
length of each element in the tree is sufficient togeconstruet the original tree. The main tree
and the length tree are each encoded using the method,deseribed here. However, the main tree
is encoded in two components as if it were two separate tiees; the first tree corresponding to
the first 256 tree elements (uncompresséd symbols), and théisecond tree corresponding to the
remaining elements (matches).

Since trees are output several times during,compression of large amounts of data (multiple
blocks), LZX optufilizes compression by encoding only the delta path lengths between the
current and previous frees. In the'ease of the very first such tree, the delta is calculated against
a tree in which all elements have a zero path length.

Each tree elemént can have a'path length from 0 to 16 (inclusive) where a zero path length
indicates that the elemént hasa zero frequency and is not present in the tree. Tree elements are
output inSequential order starting with the first element. Elements can be encoded in one of
two ways: If severalieonseetitive elements have the same path length, then run length
encoding is employed; otherwise the element is output by encoding the difference between the
current path length and the previous path length of the tree, mod 17. These output methods are
described in‘thexfollowing table:

13024
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Tree codes

Code | Operation

0-16 | Len[x] = (prev len[x] + code) mod 17

17 Zeroes = getbits(4)
Len[x] = 0 for next (4 + Zeroes) elements

18 Zeroes = getbits(5)
Len[x] = 0 for next (20 + Zeroes) elements

19 Same = getbits(1)

Decode new Code

Value = (prev_len[x] + Code) mod 17
Len[x] = Value for next (4 + Same) elements

Each of the 17 possible values of (len/x] - prev_len[x]) mod 17, plus thtee additional eode
used for run-length encoding, are not output directly as 5 bit numbers, but aré instead encc%ed
via a Huffman tree called the pre-tree. The pre-tree is generatedddynamically according to the
frequencies of the 20 allowable tree codes. The structure of the pre-tree i$,encoded’in a total of
80 bits by using 4 bits to output the path length of each of thé20 pre-tree eléments. Once
again, a zero path length indicates a zero frequency element.

Pre-tree

Length of tree code 0 4 bits
Length of tree code 1 4 bits
Length of tree code 2 4 bits

Length of tree code 18 4 bits
Length of tree code 19 4bits

The “real” tree is then encoded using, the pre-tree Huffman codes.

2.15.5 Compressed Token Sequence

The compressed token sequefice (bitstream) contains the Huffman-encoded matches and
literals using the Huftman trees specified in the block header. Decompression continues until
the;ndmber of decompresséd bytes corresponds exactly to the number of uncompressed bytes
indicated in the block header.

Thetepresentation of an unmatched literal character in the output is simply the appropriate
element index 0...255 from the Main Huffman Tree.

The representation of a match in the output involves several transformations, as shown in the
following diagram. At the top of the diagram are the match length (2..257) and the match
offset (0...WINDOW _SIZE-4). The match offset and match length are split into sub-
components and encoded separately. For matches of length 257..32768, the token indicates

14024
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

match length 257 and then there is an additional Extra Length value encoded in the bitstream
following the other Match subcomponent fields.

Match length Match offset
(2..257)

A 4

Formatted offset

y

Length header Position slot
Length footer Length/Position Aligned offset bits
head&

A

Length tree

A

f Aligned offset tree)

Figure 1: Diagram of

fset can be encoded as a repeated offset, as shown in the following
is acceptable to not encode a match as a repeated offset even if it is possible to

onverting a match offset to a formatted offset

if offset == RO then
formatted offset « 0

else if offset == Rl then
formatted offset « 1

else if offset == R2 then

15024
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

formatted offset « 2
else

formatted offset <« offset + 2
endif

2.15.7 Converting Formatted Offset into Position Slot and Position Footer Values

The formatted offset is subdivided into a position slot and position footer. The position slot
defines the most significant bits of the formatted offset in the form of a base position a§ishown
in the table on the following page. The position footer defines the remaining least significant
bits of the formatted offset. As the following table shows, the number of bits dedicated to the
position footer grows as the formatted offset becomes larger, meaning that each pesition slot
addresses a larger and larger range.

The number of position slots available depends on the window size. The huraber of bitSiof”
position footer for each position slot is fixed and also shown in thétable below.

Position Slot Table (Formatted Offset =Base Position of Slot + Footer Bits
Value)

Position slot Base Footer Base plus position
number position bits footer range
0 (RO) 0 0 0

1 (R1) 1 0 1

2 (R2) 2 0 2

3 (offset 1) 3 0 3

4 (offset2.3) |4 1 4-5

5 (offset 4..5)8,| 6 1 6-7

6 (offset 6..9) [8 2 8-11

7 (..etc..) 12 2 12-15

8 16 3 16-23

9 24 3 24-31

10 32 4 32-47

11 48 4 48-63

12 64 5 64-95

13 96 5 96-127

14 128 6 128-191

15 192 6 192-255
16 256 7 256-383
17 384 7 384-511

18 512 8 512-767
19 768 8 768-1023
20 1024 9 1024-1535
21 1536 9 1536-2047

16 of 24
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

22 2048 10 2048-3071

23 3072 10 3072-4095

24 4096 11 4096-6143

25 6144 11 6144-8191

26 8192 12 8192-12287

27 12288 12 12288-16383

28 16384 13 16384-24575

29 24576 13 24576-32767

30 32768 14 32768-49151

31 49152 14 49152-65535

32 65536 15 65536-98303

33 98304 15 98304-131071

34 131072 16 131072-196607

35 196608 16 196608-262143 ¢
36 262144 17 262144-393215

37 393216 17 393216-524287

38 524288 17 524288-655359

39 655360 17 655360-786431

40 786432 17 786432-917503

41 917504 17 917504-1048575
42 1048576 17 1048576-1179647
..etc.. ..etc.. 17 (alb)," | ..etc..

288 33292288 | 17 33292288-33423359
289 33423360 4ol 33423360-33554431

2.15.8 Converting Position Footer into Verbatim Bits or Aligned Offset Bits

The position footer can be further subdivided into verbatim bits and aligned offset bits if the
current block typ€'1s “aligned offset”. If'the current block is not an aligned offset block then
there are no aligned offset bits, and the verbatim bits are the position footer.

If aligned offsets are used, then the lower 3 bits of the position footer are the aligned offset
bitsy while the remainifigiportion of the position footer are the verbatim bits. In the case where
there are less than 3 bits in the position footer (for example, formatted offset is <= 15) it is not
possible to take the “lower 3 bits of the position footer” and therefore there are no aligned
offsét bits, andthe verbatim bits and the position footer are the same.

Pseudocode for splitting position footer into verbatim bits and aligned offset

if block type is aligned offset block then
if formatted offset <= 15 then

verbatim bits <« position footer

17 of 24
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

aligned offset <« null

else
aligned offset <« position footer
verbatim bits <« position footer >> 3
endif
else
verbatim bits <« position footer
aligned offset <« null
endif

The match length is converted into a length header and a length footer.
have one of eight possible values, from 0...7 (inclusive), indicating a
6,7, 8, or a length greater than 8. If the match length is 8 or less, t
Otherwise, the value of the length footer is equal to the match

Pseudocode for obtaining the length head‘nd foot

if match length <= 8
length header < match
length footer <« null

else
length header <« 7

length footer
endif

Example conversic o header and footer values

Match length Length footer value
None
None
None
None
None
None
None
0

1

41
247
248

ENEENEENERENE RN e A% E SN R

18 0f24
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

2.15.10 Converting Length Header and Position Slot into Length/Position Header Values

The Length/Position header is the stage which correlates the match position with the match
length (using only the most significant bits), and is created by combining the length header
and the position slot as shown below:

len pos header <« (position slot << 3) + length header
This operation creates a unique value for every combination of match length 2, 3, 45,6, 738

with every possible position slot. The remaining match lengths greater than 8 are all Tumped
together, and as a group are correlated with every possible position slot.

2.16 Extra Length Y'Y

If the match length is 257 or larger, the encoded match length token value 15257, and an
encoded Extra Length field follows the other match encoding componentsiin the bitstream.

Extra Length Encoding
Prefix Number of Bits to Decode Base,Value to Add to Decoded Value
0 8 257
10 10 25+ 256
110 12 2574256+ 1024
111 15 257

2.16.1 Encoding a Match

The match is finally output.in up tofive components, in the following order:

1. Main Tfee element atindex (len_pos header + 256).

2. If length. footér = nuld, thén Length Tree element length footer.

3. If yerbatimd bits != null, then output verbatim_bits.

4, If aligned offset_bits '= null, then output element aligned offset from the aligned
offset tree.

5. Ifimatch length 257 or larger, output appropriate Extra Length prefix and value.

2.17 Encoding a Literal

Atliteral byte not part of a match is encoded simply as a Main Tree element index 0..256
corresponding to the value of the literal byte.

19024
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

2.17.1 Decoding Matches and Literals (Aligned and Verbatim Blocks)

Decoding is performed by first decoding an element from the Main Tree and then, if the item
is a match, determining which additional components are necessary to decode to reconstruct
the match. Pseudocode for decoding a match or an uncompressed character is shown here:

main element = main tree.decode element ()

if (main element < 256) /* is a literal character */

window[curpos] <« (byte) main element
curpos <« curpos + 1

else /* is a match */
length header <« (main element - 256) & 7

if (length header == 7)
match length <« length tree.decode el

else B B B
match length <« length header + 2./* no

endif

t() +

th foot */

position slot <« (main elemen

/* check for repeated off

if (position slot == 0)
match offset <« RO

else if ?pos'
match offset
swap (RO

else if

aligned offset block)
= 3) /* this means there are some aligned

verbatim bits <« (readbits(offset bits-3)) << 3
aligned bits <« aligned offset tree.decode element();
se /* 0, 1, or 2 verbatim bits */

verbatim bits <« readbits (offset bits)

aligned bits <« 0
endif

formatted offset <« base position[position slot]
+ verbatim bits + aligned bits

else /* block type == verbatim block */

200f24
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

verbatim bits <« readbits (offset bits)

formatted offset <« base position[position slot] +
verbatim bits
endif

match offset <« formatted offset - 2

/* update repeated offset LRU queue */
R2 « RI1
R1 « RO
RO <« match offset

endif
/* check for extra length */

if (match length == 257)
if (readbits(1) != 0)
if (readbits(1) != 0)
if (readbits(1) != 0)
extra len = readbit‘lS)
else
extra len = readbits(
endif

else
extra len = readbit
endif
else
extra len = readbi
endif

match length 257 +

endif

/* copy ma
for (i ch le h; i++)
< window[curpos + 1 - match offset]

Examples

is an example of a sample encoding sequence of a simple 3-byte text input “abc
oded as uncompressed block type.

9

Value of Decoded Bits Interpretation
16 0x0014 Chunk Size: 20 bytes
1 0 E8 Translation:disabled

21 of 24
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

3 3 (binary 011) Block Type: uncompressed

24 0x000003 Block Size: 3 bytes

4 binary 0000 Padding to word-align following

4 bytes 0x00000001 (little-endian dword) RO: 1

4 bytes 0x00000001 (little-endian dword) R1:1

4 bytes 0x00000001 (little-endian dword) R2: 1

4 bytes 0x61, 0x62, 0x63 Uncompressed bytes: “abc”

1 byte 0x00 Padding to restore word-alignment

This is the raw hexadecimal compressed byte sequence of the above encoded fig

14 00 00 30 30 00 01 00 00 00 01 00 00 00 01 00 00 00 6

4 Appendix A: Office/Exchange Behavior

The information in this specification is applicable to the fol
Office/Exchange:

Office 2003 with Service Pack 3 applie’

[]
e Exchange 2003 with Service Pack 2 applie
e Office 2007 with Service Pack 1 appli
e Exchange 2007 with Service Pack 1
Exceptions, if any, are noted below. i ified, any statement of optional

behavior in this specification pre terms SHOULD or SHOULD NOT
implies Ofﬁce/Exchan’)ehaVio ith the SHOULD or SHOULD NOT
prescription. Unless otherwi i he term MAY implies Office/Exchange does
not follow the préSesiption.

[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

220f24

Index

Bitstream, 5
Block header, 11
Block size, 11
Block type, 11
Chunk size, 10
Description, 4
Bitstream, 5
Block header, 11
Block size, 11
Block type, 11
Chunk size, 10
ES8 call translation, 8
Encoding a literal, 19
Extra length, 19
Huffman trees, 6
LZ77,4
LZX,5
LZXD, 5
Match lengths, 8
Position slot, 7
Reference data, 5
Repeated offsets, 7
Window size, 5
ES8 call translation, 8
Encoding a literals
Extra length, 19
Glossary, 4
Huffman trees,
Informative re
LZ77, 4

osition slot, 7
otocol examples, 21

ence data, 5
References, 4

Informative references, 4
Normative references, 4

23 0f24
[MS-PATCH] - v0.1
LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Repeated offsets, 7
Window size, 5

Q\

[MS-PATCH] - v0.1

LZX DELTA Compression and Decompression
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

24 0f24

