

1 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

[MS-OXMSG]: .MSG File Format Specification

Intellectual Property Rights Notice for Protocol Documentation

 Copyrights. This protocol documentation is covered by Microsoft copyrights.

Regardless of any other terms that are contained in the terms of use for the

Microsoft website that hosts this documentation, you may make copies of it in

order to develop implementations of the protocols, and may distribute portions of

it in your implementations of the protocols or your documentation as necessary to

properly document the implementation. This permission also applies to any

documents that are referenced in the protocol documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this

documentation.

 Patents. Microsoft has patents that may cover your implementations of the

protocols. Neither this notice nor Microsoft's delivery of the documentation grants

any licenses under those or any other Microsoft patents. However, the protocols

may be covered by Microsoft’s Open Specification Promise (available here:

http://www.microsoft.com/interop/osp/default.mspx). If you would prefer a

written license, or if the protocols are not covered by the OSP, patent licenses are

available by contacting protocol@microsoft.com.

 Trademarks. The names of companies and products contained in this

documentation may be covered by trademarks or similar intellectual property

rights. This notice does not grant any licenses under those rights.

Reservation of Rights. All other rights are reserved, and this notice does not grant any

rights other than specifically described above, whether by implication, estoppel, or

otherwise.

Preliminary Documentation. This documentation is preliminary documentation for these

protocols. Since the documentation may change between this preliminary version and the

final version, there are risks in relying on preliminary documentation. To the extent that you

incur additional development obligations or any other costs as a result of relying on this

preliminary documentation, you do so at your own risk.

Tools. This protocol documentation is intended for use in conjunction with publicly available

standard specifications and networking programming art, and assumes that the reader is either

familiar with the aforementioned material or has immediate access to it. A protocol

specification does not require the use of Microsoft programming tools or programming

environments in order for a Licensee to develop an implementation. Licensees who have

access to Microsoft programming tools and environments are free to take advantage of them.

http://www.microsoft.com/interop/osp/default.mspx
mailto:protocol@microsoft.com

2 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Revision Summary

Author Date Version Comments

Microsoft

Corporation

April 4,

2008

0.1 Initial Availability

3 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Table of Contents
1 Introduction ... 4

1.1 Glossary .. 4

1.2 References ... 5

1.2.1 Normative References .. 5

1.2.2 Informative References .. 6

1.3 Structure Overview (Synopsis) .. 6

1.3.1 .MSG File Format Specification and Compound Files .. 6

1.3.2 Properties .. 6

1.3.3 Storages ... 7

1.3.4 Top Level Structure .. 7

1.4 Relationship to Protocols and Other Structures .. 7

1.5 Applicability Statement .. 7

1.6 Versioning and Localization .. 8

1.7 Vendor-Extensible Fields ... 8

2 Structures... 8

2.1 Properties .. 8

2.1.1 Fixed Length Properties ... 8

2.1.2 Variable Length Properties .. 9

2.1.3 Multi-Valued Properties ... 10

2.2 Storages ... 12

2.2.1 Recipient Object Storage ... 12

2.2.2 Attachment Object Storage .. 12

2.2.3 Named Property Mapping Storage .. 14

2.3 Top Level Structure .. 19

2.4 Property Stream .. 19

2.4.1 Header ... 19

2.4.2 Data ... 21

3 Structure Examples .. 24

3.1 From Message Object to .MSG File Format Specification .. 24

3.2 Named Property Mapping .. 27

3.2.1 Property ID to Property Name ... 27

3.2.2 Property Name to Property ID ... 29

3.3 Custom Attachment Storage .. 30

4 Security Considerations ... 31

5 Appendix A: Office/Exchange Behavior .. 31

6 Index .. 33

4 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

1 Introduction
The .MSG file format specification is used to represent individual e-mail messages,

appointments, contacts, tasks, and so on in the file system. This document specifies the

protocol used to write to and read from an .MSG file.

1.1 Glossary

The following terms are defined in [MS-OXGLOS]:

attachment

attachment object

embedded Message object

GUID

little-endian

Message object

name identifier

named property

property

property ID

property name

property set

property tag

property type

recipient

store

stream

tagged property

Unicode

The following terms are defined in [MS-DTYP]

ULONG

WORD

The following terms are specific to this document:

compound file: A file that is created by using [MSFT-CFB] and is capable of storing data

structured as storage and streams.

named property mapping: The process of converting property name [MS-OXCDATA] to

property IDs and vice-versa. Named properties can be referred to by their property

5 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

name [MS-OXCDATA], but before accessing the property on a particular store,

they have to be mapped to property IDs valid for that store. The reverse is also true.

When properties need to be copied across stores, property IDs valid for the source

store have to be mapped to their property name [MS-OXCDATA] before they can

be sent to the destination store.

numerical named property: A named property that has a numerical name identifier. Its

name identifier will be stored in property name [MS-OXCDATA] structure’s

member LID [MS-OXCDATA].

recipient object: A set of properties representing the recipient of a message object.

storage: A construct that can act as a container for streams and other storages. It can be

thought of as analogous to a directory in a file system.

string named property: A named property that has a Unicode string as the name

identifier. Its name identifier is represented in property name [MS-OXCDATA]

structure member Name [MS-OXCDATA]. Note that this property can have any

property type. The string only refers to its name identifier.

string property: A property whose property type is PtypString8 or PtypString [MS-

OXCDATA].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used

as described in [RFC2119]. All statements of optional behavior use either MAY,

SHOULD, or SHOULD NOT.

1.2 References

1.2.1 Normative References

[MS-DTYP] Microsoft Corporation, "Windows Data Types", March 2007,

http://go.microsoft.com/fwlink/?LinkId=111558.

[MS-OXCDATA] Microsoft Corporation, "Data Structures Protocol Specification", April

2008.

[MS-OXCMSG] Microsoft Corporation, "Message and Attachment Object Protocol

Specification", April 2008.

[MS-OXGLOS] Microsoft Corporation, "Office Exchange Protocols Master Glossary", April

2008.

[MS-OXPROPS] Microsoft Corporation, "Office Exchange Protocols Master Property List

Specification", April 2008.

http://go.microsoft.com/fwlink/?LinkId=111558

6 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

[MSFT-CFB] Microsoft Corporation, "Compound File Binary File Format", February 2008,

http://go.microsoft.com/fwlink/?LinkId=111739.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP

14, RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.

1.2.2 Informative References

[MSDN-STS] Microsoft Corporation, "About Structured Storage",

http://go.microsoft.com/fwlink/?LinkId=112496.

1.3 Structure Overview (Synopsis)

1.3.1 .MSG File Format Specification and Compound Files

The .MSG file format specification is based on the Compound File Binary File Format

specified in [MSFT-CFB]. The paradigm provides for the concept of storage and stream

which are similar to directories and files, except that the entire hierarchy of storages and

streams are packaged into a single file, called a compound file. This facility allows

applications to store complex, structured data in a single file. For more information regarding

structured storage in a compound file, see [MSDN-STS].

The .MSG file format specification provides for a number of storages, each representing one

major component of the message object being represented, and a number of streams are

contained within those storages, where each stream represents a property (or a set of

properties) of that component. Note that nesting is also possible as specified by [MSFT-CFB]

where one storage can contain other sub-storages.

1.3.2 Properties

Properties are stored in streams contained within storages or at the top level of the .MSG file.

They can be classified into the following broad categories based on how they are represented

in the .MSG file format specification.

Property Group Description

Fixed Length Properties Properties that have values of fixed size.

Variable Length Properties Properties that have values of variable sizes.

Multi-valued Properties
Properties that have multiple values, each of the same type. The

type can be fixed length or variable length.

Each type of property can be a tagged property or a named property. There is no difference

in the way the property is stored based on that attribute. However, for all named properties,

http://go.microsoft.com/fwlink/?LinkId=111739
http://www.ietf.org/rfc/rfc2119.txt
http://go.microsoft.com/fwlink/?LinkId=112496

7 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

appropriate mapping information has to be provided as specified by the Named property

mapping storage.

1.3.3 Storages

Storages are used to represent major components of the message object. The following is a list

of all the possible storages that the .MSG file format specification specifies:

Storage Description

Recipient object storage
A storage used to store all property streams describing a

recipient object.

Attachment object storage
A storage used to store all property streams and sub-storages

describing an attachment object.

Embedded message object
storage

A storage used to store all property streams and sub-storages

describing an embedded message object.

Custom Attachment Storage

A storage used for an attachment that represents data from an

arbitrary client application. The streams and storages contained,

and their format are defined by the application that owns the

data.

Named property mapping

storage

A storage used to store information to map property name to

property IDs and vice-versa, for named properties.

1.3.4 Top Level Structure

The top level of the file represents the entire message object. Depending on what type of

message object it is, the number of recipient objects and attachment objects it has and the

properties that are set on it, there can be different storages and streams in the corresponding

.MSG file.

1.4 Relationship to Protocols and Other Structures

The .MSG file format specification relies on many underlying concepts, protocols and

structures. The table below lists them and the corresponding document or reference where

more information about them can be obtained:

Protocol/Structure
Document/Refer

ence

Compound File Binary File Format [MSFT-CFB]

Message and Attachment Object Protocol Specification [MS-OXCMSG]

1.5 Applicability Statement

Files in the .MSG file format specification can be used for sharing individual message objects

between clients or stores using the file system.

There are also scenarios where storing a message object in the .MSG file format specification

would not be particularly well-suited. For example:

8 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

 Maintaining a large stand-alone archive (a more full featured store that can more

efficiently render views would be a better option).

 As an interchange format in which the receiver is unknown since it is possible that the

format is not supported by the receiver and information that is private or irrelevant might

be transmitted.

1.6 Versioning and Localization

Clients can read the PidTagStoreSupportMask, defined in section 2.1property from the

property stream and check the STORE_UNICODE_OK flag (bitmask 0x00040000) within it

to determine if string properties are Unicode encoded or not.

1.7 Vendor-Extensible Fields

The .MSG file format specification does not provide any extensibility or functionality beyond

what is provided by [MSFT-CFB].

2 Structures

2.1 Properties

Properties are stored in streams contained within one of the storages or at the top level of the

.MSG file. There is no difference in property storage semantics for named properties when

compared to tagged properties.

Property PidTagStoreSupportMask has type PtypInteger32 and is used to determine whether

string properties are Unicode encoded or not. If string properties are Unicode encoded, then

this property MUST be present and the STORE_UNICODE_OK flag (bitmask 0x00040000)

MUST be set. All other bits of the property’s value MUST be ignored.

Properties can be classified into the following broad categories based on how they are

represented in the .MSG file format specification.

2.1.1 Fixed Length Properties

Fixed length properties, within the context of this document, are defined as properties that, as

a result of their type, always have values of the same length. The table below is an exhaustive

list of fixed length property types:

Property type Data type Size (in bits)

PtypInteger16 short int 16

PtypInteger32 LONG 32

PtypFloating32 Float 32

PtypFloating64 Double 64

9 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

PtypBoolean unsigned short int 16

PtypCurrency CURRENCY 64

PtypFloatingTime Double 64

PtypTime FILETIME 64

PtypInteger64 LARGE_INTEGER 64

Table: Fixed Length Property types

All fixed length properties are stored in the property stream. Each fixed length property has

one entry in the property stream and that entry includes its property tag, value and a flag

providing additional information about the property.

2.1.2 Variable Length Properties

A variable length property, within the context of this document, is defined as one where each

instance of the property can have a value of a different size. Such properties are specified

along with their lengths or have alternate mechanisms (such as NULL character termination)

for determining their size.

The table below is an exhaustive list of variable length property types:

Property type

PtypString

PtypBinary

PtypString8

PtypGuid<1>

Table: Variable Length Property Types

Each variable length property has an entry in the property stream. However, the entry contains

only the property tag, size and a flag providing more information about the property and not

its value. Since the value can be variable in length, it is stored in an individual stream by itself.

The name of the stream where the value of a particular variable length property is stored is

determined by its property tag. The stream name is created by prefixing a string containing the

hexadecimal representation of the property tag with the string "__substg1.0_". For example, if

the property tag is PidTagSubject [MS-OXPROPS], the name of the stream MUST be

"__substg1.0_0037001F", where 0037001F is the hexadecimal representation of

PidTagSubject’s property tag.

10 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

If the PidTagStoreSupportMask [MS-OXPROPS] property is present and has the

STORE_UNICODE_OK (bitmask 0x00040000) flag set, all string properties in the .MSG

file MUST be present in Unicode format. If the PidTagStoreSupportMask [MS-OXPROPS]

is not available in the property stream or if the STORE_UNICODE_OK (bitmask

0x00040000) flag is not set, the .MSG file MUST be considered as non-Unicode and all string

properties in the file MUST be in non-Unicode format.

All string properties for a message object MUST be either Unicode or non-Unicode. The

.MSG file format specification does not allow the presence of both simultaneously. However,

an embedded message object can have a different Unicode state than the containing message

object.

2.1.3 Multi-Valued Properties

A multi-valued property can have multiple values corresponding to it, stored in an array. All

values of the property MUST have the same type.

Each multi-valued property has an entry in the property stream. However, the entry contains

only the property tag, size and a flag providing more information about the property and not

its value.

The value is stored differently depending upon whether the property is a fixed length multi-

valued property or a variable length multi-valued property.

2.1.3.1 Fixed Length Multi-Valued Properties

A fixed length multi-valued property, within the context of this document, is defined as a

property that can have multiple values, where each value is of the same fixed length type. The

table below is an exhaustive list of fixed length multi-valued property types and the

corresponding value types.

Property Type Value Type

PtypMultipleInteger16 PtypInteger16

PtypMultipleInteger32 PtypInteger32

PtypMultipleFloating32 PtypFloating32

PtypMultipleFloating64 PtypFloating64

PtypMultipleCurrency PtypCurrency

PtypMultipleFloatingTime PtypFloatingTime

PtypMultipleTime PtypTime

11 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

PtypMultipleGuid PtypGuid

PtypMultipleInteger64 PtypInteger64

Table: Fixed Length Multi-Valued Property types

All values of a fixed length multi-valued property MUST be stored in one stream. The name

of that stream is determined by the property’s property tag. The stream name is created by

prefixing a string containing the hexadecimal representation of the property with the string

"__substg1.0_". For example, if the property tag is PidTagScheduleInfoMonthsBusy [MS-

OXPROPS], the name of the stream MUST be "__substg1.0_68531003", where 68531003 is

the hexadecimal representation of PidTagScheduleInfoMonthsBusy.

The values associated with the fixed length multi-valued property MUST be stored in the

stream contiguously like an array.

2.1.3.2 Variable Length Multi-Valued Properties

A variable length multi-valued property, within the context of this document, is defined as a

property that can have multiple values, where each value is of the same type but can have

different lengths. The table below is an exhaustive list of variable length multi-valued property

types and the corresponding value types.

Property Type Value Type

PtypMultipleBinary PtypBinary

PtypMultipleString8 PtypString8

PtypMultipleString PtypString

Table: Variable Length Multi-Valued Property types

For each variable length multi-valued property, if there are N values, there MUST be N + 1

streams; N streams to store each individual value and one stream to store the lengths of all the

individual values.

2.1.3.2.1 Length Stream

The name of the stream that stores the lengths of all values MUST be derived by prefixing a

string containing the hexadecimal representation of the property tag with the string

"__substg1.0_". For example, if the property tag is PidTagScheduleInfoDelegateNames [MS-

OXPROPS], the stream's name MUST be "__substg1.0_6844101F" where 6844101F is the

hexadecimal representation of PidTagScheduleInfoDelegateNames. The lengths of all the

values MUST be stored inside this stream in contiguous ULONG entries. Therefore, the first

4 bytes of this stream MUST represent the length of the first value of the property, the next 4

bytes the length of the second value, and so on.

12 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

2.1.3.2.2 Value Streams

Each value of the property MUST be stored in an individual stream. The name of the stream is

constructed as follows:

a. Concatenate a string containing the hexadecimal representation of the property tag to

the string “__substg1.0_”.

b. Concatenate the character “-“ to the result.

c. Concatenate a string containing the zero based hexadecimal index of the value within

that property, to the result. The index used MUST also be the index of the ULONG

where the value’s length is stored in the length stream.

For example the first value of the property PidTagScheduleInfoDelegateNames [MS-

OXPROPS] MUST be stored in a stream with name "__substg1.0_6844101F-00000000",

where 6844101F is the hexadecimal representation of the property tag and 00000000

represents the index of the first value. The second value of the property MUST be stored in a

stream with name "__substg1.0_6844101F-00000001", and so on.

2.2 Storages

The following is a detailed description of possible storages in the .MSG file format

specification:

2.2.1 Recipient Object Storage

The recipient object storage contains streams which store properties pertaining to one recipient

object.

The following MUST be true for recipient object storages:

 The recipient object storage representing the first recipient object MUST be named

"__recip_version1.0_#00000000". The storage representing the second MUST be named

"__recip_version1.0_#00000001" and so on. The digit suffix MUST be in hexadecimal,

for example the storage name for the eleventh recipient object MUST be

"__recip_version1.0_#0000000A"<2>.

 There MUST be exactly one property stream and it MUST contain entries for all

properties of the recipient object.

 There MUST be exactly one stream for each variable length property of the recipient

object, as specified in section 2.1.2.

 There MUST be exactly one stream for each fixed length multi-valued property of the

recipient object, as specified in section 2.1.3.1

 For each variable length multi-valued property of the recipient object, if there are N

values, there MUST be N + 1 streams, as specified in section 2.1.3.2.

2.2.2 Attachment Object Storage

The attachment object storage contains streams and sub-storages which store properties

pertaining to one attachment object.

13 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

The following MUST be true for attachment object storages:

 The attachment object storage representing the first attachment object MUST be named

"__attach_version1.0_#00000000". The storage representing the second MUST be named

"__attach_version1.0_#00000001" and so on. The digit prefix MUST be in hexadecimal,

for example the storage name for the eleventh attachment object MUST be

"__attach_version1.0_#0000000A”<3>.

 There MUST be exactly one property stream and it MUST contain entries for all

properties of the attachment object.

 There MUST be exactly one stream for each variable length property of the attachment

object, as specified in section 2.1.2.

 There MUST be exactly one stream for each fixed length multi-valued property of the

attachment object, as specified in section 2.1.3.1

 For each variable length multi-valued property of the attachment object, if there are N

values, there MUST be N + 1 streams, as specified in section 2.1.3.2.

 If the attachment object itself is a message object, there MUST be an embedded message

object storage under the attachment object storage.

 If the attachment object has a value of afStorage [MS-OXCMSG] for

PidTagAttachMethod [MS-OXPROPS] property, then there MUST be a custom

attachment storage under the attachment object storage.

For any named properties on the attachment object, the corresponding mapping information

MUST be present in the named property mapping storage.

2.2.2.1 Embedded Message Object Storage

The .MSG file format specification defines separate storage semantics for embedded message

objects. First, as for any other attachment object, an attachment object storage MUST be

created for them. Any properties on the attachment object MUST be stored under the

attachment object storage, as would be done for a regular attachment object.

Then within that attachment object storage, a sub-storage with the name

"__substg1.0_3701000D" MUST be created. All properties of the embedded message object

MUST be contained inside this storage and MUST follow the regular property storage

semantics.

If there are multiple levels of attachment objects─for example, if the embedded message

object further has attachment objects, they MUST be represented by sub-storages contained in

the embedded message object's storage and follow the regular storage semantics for

attachment objects. For each recipient object of the embedded message object, there MUST be

a recipient object storage contained in the embedded message object storage.

However, named property mapping information for any named properties on the embedded

message object MUST be stored in the named property mapping storage under the top level

and the embedded message object MUST NOT contain a named property mapping storage.

14 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

The embedded message object can have different Unicode state than the message object

containing it, and so its Unicode state MUST be checked as specified in section 2.1.2.

It is important to understand the difference between the properties on the attachment object

and the properties on the embedded message object that the attachment object represents. An

example of a property on the attachment object would be PidTagDisplayName [MS-

OXPROPS] which is a property that all attachment objects MUST have irrespective of

whether they represent embedded message objects or regular attachment objects. Such

properties are stored in the attachment object storage. An example of a property on an

embedded message object is PidTagSubject [MS-OXPROPS] and it MUST be contained in

the embedded message object storage.

2.2.2.2 Custom Attachment Storage

The .MSG file format specification defines separate storage semantics for attachments that

represent data from an arbitrary client application. These are attachments that have the value

for property PidTagAttachMethod [MS-OXPROPS] set to afStorage [MS-OXCMSG]. First

like for any other attachment object, an attachment object storage MUST be created for them.

Any properties on the attachment object MUST be stored under the attachment object storage,

as would be done for a regular attachment object.

Then, within that attachment object storage, a sub-storage with the name

"__substg1.0_3701000D" MUST be created. At this point, the application that owns the data

is allowed to define the structure of the sub-storage. Thus, the streams and storages contained

in the custom attachment storage are defined by the application that owns the data. More

information can be found in [MS-OXCMSG]. For an example, see section 3.3.

2.2.3 Named Property Mapping Storage

Named properties are specified using their property names.

The mapping between a named property’s property name and its property ID and vice versa is

provided by the data inside the various streams contained in the named property mapping

storage. The streams and the role each one plays are specified in the following subsections.

This storage MUST be the one and only place where such mappings are stored for the

message object and all its sub-objects. The storage MUST be named "__nameid_version1.0".

2.2.3.1 Property ID to Property Name Mapping

The following streams define the mapping from property ID to property name and MUST be

present inside the named property mapping storage:

2.2.3.1.1 GUID Stream

This stream MUST be named "__substg1.0_00020102". It MUST store the property set

GUID part of the property name of all named properties in the message object or any of its

sub-objects, except for those named properties that have PS_MAPI or

PS_PUBLIC_STRINGS [MS-OXPROPS] as their property set GUID.

15 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

The GUIDs are stored in the stream consecutively like an array. If there are multiple named

properties that have the same property set GUID, then the GUID is stored only once and all

the named properties will refer to it by its index.

2.2.3.1.2 Entry Stream

The stream MUST be named "__substg1.0_00030102" and MUST consist of 8 byte entries,

one for each named property being stored and all entries MUST be arranged consecutively,

like an array. In this stream, there MUST be exactly one entry for each named property of the

message object or any of its sub-objects.

Each of the 8 byte entries MUST have the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Name Identifier OR String Offset

Index & Kind Information

Name Identifier (ULONG): The ID part of the property name [MS-OXCDATA] if this is a

numerical named property as specified by the Prop Kind field.

String Offset (ULONG): The offset in bytes into the strings stream if this is a string named

property as specified by the Prop Kind field.

Index & Kind Information (ULONG): This ULONG MUST have the structure specified

below. It MUST be read from the stream as a ULONG.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Property Index GUID Index
Property

Kind

 Property Index (WORD): Sequentially increasing, zero based index. This MUST be 0 for

the first named property, 1 for the second and so on.

GUID Index (15 byte numerical value): Index into the GUID stream. The table below shows

how the value MUST be interpreted.

Value GUID to use

16 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

1
Always use the GUID PS_MAPI [MS-OXPROPS]. No GUID is stored in the

GUID stream.

2
Always use the GUID PS_PUBLIC_STRINGS [MS-OXPROPS]. No GUID is

stored in the GUID stream.

>= 3

Use Value minus 3 as the index of the GUID into the GUID stream. For example,

if the GUID index is 5, the second GUID (5 minus 3) MUST be used as the GUID

for the name property being derived.

Property Kind (one bit): Bit indicating the type of the property; 0 if numerical named

property and 1 if string named property

The index of the entry for a particular property ID is calculated by subtracting 0x8000 from it.

For example, if the property ID is 0x8005, the index for the corresponding 8 byte entry would

be 0x8005 – 0x8000 = 5. The index can then be multiplied by 8 to get the actual byte offset

into the stream from where to start reading the corresponding entry.

2.2.3.1.3 String Stream

The stream MUST be named "__substg1.0_00040102". It MUST consist of one entry for each

string named property and all entries MUST be arranged consecutively, like in an array.

As specified in the entry stream section, the offset, in bytes, to use for a particular property is

stored in the corresponding entry in the entry stream. That MUST be a byte offset into the

string stream from where the entry for the property can be read. The strings MUST NOT be

NULL terminated. Implementers SHOULD add a NULL terminator to the string after they

read it from the stream, if appropriate.

Each entry MUST have the following format:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Name Length

Name (variable length)

Name Length (ULONG): The length of the following Name field in bytes

Name (variable length buffer): A Unicode string that is the name of the property

A new entry MUST always start on a 4 byte boundary and so if the size of the Name field is

not an exact multiple of 4, NULL bytes MUST be appended to the stream after it till the 4 byte

boundary is reached. The Name Length field for the next entry will then start at the beginning

of the next 4 byte boundary.

17 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

2.2.3.2 Property Name to Property ID Mapping Streams

Besides the three streams that provide property ID to property name mapping, there MUST be

streams in the named property mapping storage that provide a mechanism to map property

names [MS-OXCDATA] to property IDs. Each named property MUST have an entry in one

of those streams, although one stream can have entries for multiple named properties. The

following sections specify the steps for obtaining the property ID given the property name.

2.2.3.2.1 Determining GUID Index

The first step is to determine the GUID index. The GUID index for a named property is

computed from the position at which its GUID is stored in the GUID stream, except if the

GUID is PS_MAPI or PS_PUBLIC_STRINGS [MS-OXPROPS]. The table below specifies

how the GUID index MUST be computed.

GUID GUID Index

PS_MAPI [MS-OXPROPS] 1

PS_PUBLIC_STRINGS [MS-OXPROPS] 2

Search for the GUID in the GUID stream. If the GUID is the first one in

the GUID stream, the GUID index is 3; if it is the second GUID in the

GUID stream, the GUID index is 4, and so on.

Index + 3

Table: Computing GUID Index from the GUID

Index is the zero based position of the GUID in the GUID stream.

2.2.3.2.2 Generating Stream ID

The stream ID is a number used to create the name of the stream for the named property.

The stream ID for a particular named property is calculated differently depending on whether

the named property is a numerical named property or a string named property.

2.2.3.2.2.1 Stream ID Equation

For numerical named properties, the following equation is used:

For string named properties, the following equation is used:

0x1F is the maximum number of property name to property ID mapping streams that the

.MSG file format specification allows in the named property mapping storage.

For numerical named properties, ID is the name identifier.

18 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

For string named properties, the ID is generated by computing the CRC-32 (Cyclic

Redundancy Check) for their Unicode name identifier<4>.

2.2.3.2.3 Generating Stream Name

The stream ID is then used to generate a property tag specifying the property type as

PtypBinary [MS-OXCDATA]. A property tag is a ULONG and is generated in this case by

setting the first 16 bits to be the stream ID and the last 16 bits to be 0x0102. The computation

of the property tag can be represented as:

Then prefix the generated property tag with the following string "__substg1.0_" to generate

the name of the stream. For example, if the stream ID is 0x100A, the property tag MUST be

0x100A0102 and the stream name MUST be "__substg1.0_ 100A0102".

Multiple named properties can be mapped to the same stream if the same stream ID is

generated by the stream ID equation.

2.2.3.2.4 Obtaining Stream Data

Each of these streams MUST be an array of 8 byte entries and each 8 byte entry MUST have

the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Name Identifier

Index & Kind Information

Where the meaning of each field and the sub-structure of the Index & Kind Information is as

specified in the entry stream section.

The number of entries in one stream depends on the number of properties were mapped into it

by the stream ID equation.

Then, the data inside the stream can be fetched and broken up into 8 byte entries. By

comparing the Name Identifier field from the stream with the name identifier obtained from

the property name, the correct 8-byte entry can be identified. In case of string named

properties, the Name Identifier obtained from the stream is compared with the CRC-32

computation of the Unicode string name to obtain the correct entry.

At that point, the property ID of the named property is simply the sum of 0x8000 and the Prop

Index field from the 8-byte entry. Section 3.2.2 provides an example illustrating this mapping.

19 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

2.3 Top Level Structure

The top level of the file represents the entire message object. The numbers and types of

storages and streams present in a .MSG file depend on the type of message object, the number

of recipient object and attachment objects it has and the properties that are set on it.

The .MSG file format specification specifies the following top level structure. Under the top

level:

 There MUST be exactly one recipient object storage for each recipient object of the

message object.

 There MUST be exactly one attachment object storage for each attachment object of the

message object.

 There MUST be exactly one named property mapping storage.

 There MUST be exactly one property stream and it MUST contain entries for all

properties of the message object.

 There MUST be exactly one stream for each variable length property of the message

object. That stream MUST contain the value of that variable length property.

 There MUST be exactly one stream for each fixed length multi-valued property of the

message object. That stream MUST contain all the values of that fixed length multi-valued

property.

 For each variable length multi-valued property of the message object, if there are N

values, there MUST be N + 1 streams.

2.4 Property Stream

The property stream MUST have the name “__properties_version1.0” and MUST consist of a

header followed by an array of 16-byte entries. Every storage type in the specified by the

.MSG file format specification MUST have a property stream in it.

Every property of an object MUST have an entry in the property stream for that object. Fixed

length properties also have their values stored as a part of the entry whereas the values of

variable length properties and multi-valued properties are stored in separate streams.

2.4.1 Header

The header of the property stream is different depending on which storage this property stream

belongs to.

2.4.1.1 Top Level

The structure of the header for the property stream contained inside the top level of the .MSG

file, which represents the message object itself, is given in the table below.

20 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved

Reserved

Next Recipient ID

Next Attachment ID

Recipient Count

Attachment Count

Reserved

Reserved

Reserved: The value in all reserved bits MUST be ignored while reading a .MSG file. The bits

MUST be set to 0 while writing into a .MSG file.

Next Recipient ID (ULONG): The ID to use for naming the next recipient object storage if

one is created inside the .MSG file. The naming convention to be used is specified in section

2.2.1.

Next Attachment ID (ULONG): The ID to use for naming the next attachment object storage

if one is created inside the .MSG file. The naming convention to be used is specified in section

2.2.2.

Recipient Count (ULONG): The number of recipient objects.

Attachment Count (ULONG): The number of attachment objects.

2.4.1.2 Embedded Message Object Storage

The structure of the header for the property stream contained inside any embedded message

object storage is given in the table below.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved

21 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Reserved

Next Recipient ID

Next Attachment ID

Recipient Count

Attachment Count

The descriptions of the fields are the same as in the top level (see section 2.4.1.1).

2.4.1.3 Attachment Object Storage or Recipient Object Storage

The structure of the header for the property stream contained inside any attachment object

storage or recipient object storage is given in the table below.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved

Reserved

The descriptions of the fields are the same as in the top level (see section 2.4.1.1).

2.4.2 Data

The data inside the property stream MUST be an array of 16-byte entries. The number of

properties, each represented by one entry, can be determined by first measuring the size of the

property stream, then subtracting the size of the header from it , and then dividing the result by

the size of one entry.

The structure of each entry, representing one property, depends on whether the property is a

fixed length property or not.

2.4.2.1 Fixed Length Property Entry

The structure of the entry for a fixed length property is shown in the table below.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Property Tag

22 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Flags

Value… (continued)

…Value

Property Tag (ULONG): The property tag of the property.

Flags (ULONG): Flags giving context to the property. Possible values for this field are given

in the table below. Any bitwise combination of the flags is valid.

Name Value Description

PROPATTR_MANDATORY 0x00000001

If this flag is set for a property, that property

MUST not be deleted from the .MSG file

(irrespective of which storage it is contained

in) and implementers MUST return an error

if any attempt is made to do so. This flag

SHOULD NOT be set on any property

unless an implementation depends on that

property always being present in the .MSG

file once it is written there.

PROPATTR_READABLE 0x00000002

If this flag is not set on a property, that

property MUST not be read from the .MSG

file and implementers SHOULD return an

error if any attempt is made to read it. This

flag SHOULD be set on all properties unless

there is an implementation specific reason to

prevent a property from being read from the

.MSG file.

PROPATTR_WRITABLE 0x00000004

If this flag is not set on a property, that

property MUST not be modified or deleted

and implementers MUST return an error is

any attempt is made to do so. This flag

SHOULD only be set in circumstances

where the implementation depends on the

properties being writable.

Value (8 bytes): The structure of the field is as follows:

23 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Data (variable)

Reserved (variable)

The sizes of the Data and Reserved fields depend upon the property type of the property. The

property type can be inferred from the property tag as follows:

The table below lists the size of Data field for different property types.

Property Type
Data Size

(bits)

PtypInteger16 16

PtypInteger32 32

PtypFloating32 32

PtypFloating64 64

PtypCurrency 64

PtypFloatingTime 64

PtypErrorCode 32

PtypBoolean 16

PtypInteger64 64

PtypTime 64

The bits of the Reserved field MUST be ignored.

2.4.2.2 Variable Length Property or Multi-Valued Property Entry

The structure of the entry for a variable length property is shown in the table below.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Property Tag

Flags

Byte Count

Reserved

24 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Property Tag (ULONG): Same as the description in section 2.4.2.1.

Flags (ULONG): Same as the description in section 2.4.2.1.

Byte Count (ULONG): The size in bytes of the value of the property represented by this

entry. In the case of variable length properties, this MUST be equal to the size of the stream

where the value of the property represented by this entry is stored. In case of fixed length

multi-valued properties, this MUST be equal to the size of the stream where all values of that

property are stored. In case of variable length multi-valued properties, this MUST be equal to

the size of the length stream where the lengths of the value streams for the property are stored.

Reserved: The value in all reserved bits MUST be ignored while reading a .MSG file.

3 Structure Examples

3.1 From Message Object to .MSG File Format Specification

Figure 1 shows a graphical representation of a sample message in the .MSG file format. The

sample message has two attachment objects and two recipient objects. Note that the streams

present depend on the properties that are set on the corresponding message object.

Figure 1: A sample message in the .MSG file format

In Figure 1, storages are represented by folder icons and streams by the text page icons. A few

things to note:

25 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

 “__attach_version1.0_#00000000” and “__attach_version1.0_#00000001” are

attachment object storages, each representing one attachment object in the message

object.

 “__recip_version1.0_#00000000” and “__recip_version1.0_#00000001” are recipient

object storages, each representing one recipient object of the message object.

“__nameid_version1.0” is the named property mapping storage that contains all

named property mappings for the message object and its sub-objects.

 "__properties_version1.0" is the property stream.

Figure 2: Expanded view of the named property mapping storage

The named property mapping storage contains the three streams used to provide a mapping

from property IDs to property name ("__substg1.0_00020102", "__substg1.0_00030102"

and "__substg1.0_00040102") and various other streams that provide a mapping from

property names [MS-OXCDATA] to property IDs.

26 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Figure 3: Expanded view of attachment object storages and recipient object storages

Each of the attachment object storages and recipient object storages contain the property

stream and a stream for each variable length property. One of the attachment objects is itself a

message object and it has a sub-storage called "__substg1.0_3701000D" where properties

27 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

pertaining to that message object are stored. The embedded message object storage itself

contains a recipient object storage and six attachment object storages.

3.2 Named Property Mapping

The following examples illustrate how named property mapping works. In this example, it is

assumed that the named property mapping storage has been populated with the data required

to achieve named property mapping as specified by the .MSG file format specification.

3.2.1 Property ID to Property Name

For both numerical named properties and string named properties, the first part involves

fetching the entry from the entry stream. Once the kind of the named property has been

determined, the logic for fetching the name identifier is different.

3.2.1.1 Fetching the Name Identifier

In this example, property ID 0x8005 has to be mapped to its property name. First, the entry

index into the entry stream is determined.

Property ID – 0x8000

= 0x8005 – 0x8000

= 0x0005

Then, the offset for the corresponding 8-byte entry is determined:

Entry index * size of entry

= 0x05 * 0x08

= 0x28

The offset is then used to fetch the entry from the entry stream ("__substg1.0_00030102")

which is contained inside the named property mapping storage ("__nameid_version1.0"). In

this case, bytes 40 – 47 are fetched from the stream. Then, the structure specified in the entry

stream section is applied to those bytes, taking into consideration that the data is stored in

little-endian format.

3.2.1.1.1 Numerical Named Property

The following 8 bytes represent an entry from the entry stream (in hexadecimal notation):

1C 81 00 00 08 00 05 00

The structure specified in the entry stream section is applied to these bytes to obtain the

following values:

Name identifier = 0x811C

Prop index = 0x05

GUID index = 0x04

Prop kind = 0

28 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

From these values, it is determined that this is a numerical named property with name

identifier 0x811C.

3.2.1.1.2 String Named Property

The following 8 bytes represent an entry from the entry stream (in hexadecimal notation):

10 00 00 00 07 00 05 00

The structure specified in the entry stream section is applied to these bytes to obtain the

following values:

String offset = 0x10

Prop index = 0x05

GUID index = 0x03

Prop kind = 1

From these values it is determined that this is a string named property with string offset of

0x10.

The string offset is then used to fetch the entry from the string stream

("__substg1.0_00040102") which is contained inside the named property mapping storage

("__nameid_version1.0"). The structure in the table specified in the string stream section is

applied to those bytes, taking into consideration that the data is stored in little-endian format.

If the string stream is as follows:

09 92 7D 46 35 2E 7D 1A 41 11 92 72 01 F2 30 12 00 00 00 1C 00 5A 00 5C 00

91 00 48 00 45 00 44 00 41 00 45 00 52 00 20 00 53 00 49 00 5A 00 44 8A 6F

BB 4D 12 52 E4 11 09 91

The 4 bytes at offset 0x10 constitute the ULONG 0x0000001C. The string name starts at 0x10

+ 0x04 = 0x14 and extends till 0x14 + 0x1C = 0x2F. Hence, it will be the following:

00 5A 00 5C 00 91 00 48 00 45 00 44 00 41 00 45 00 52 00 20 00 53 00 49 00

5A 00 44

3.2.1.2 Fetching the GUID

The only missing piece of information at this point is the GUID. It is fetched by first

calculating the GUID Entry Index:

 GUID index – 0x03

= 0x04 – 0x03

= 0x01

Then the offset into the GUID stream is determined

29 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

 GUID Entry Index * size of GUID

= 0x01 * 0x10

= 0x10

The offset is then used to fetch the GUID from the GUID Stream ("__substg1.0_00020102")

which is contained inside the named property mapping storage ("__nameid_version1.0"). In

this case, bytes 16 – 31 will be fetched from the stream.

In this example, the 16 bytes fetched are as follows (in hexadecimal notation)

03 20 06 00 00 00 00 00 C0 00 00 00 00 00 00 46

Considering that the bytes are in little-endian format, the GUID is

{0x00062003, 0x0000, 0x0000, { 0x00, 0x00, 0x00, 0xC0, 0x46, 0x00, 0x00, 0x00}}

Thus all the fields needed to specify the property name, given a property ID, can be obtained

from the data stored in the entry stream, the string stream and the GUID stream.

3.2.2 Property Name to Property ID

If a property name is specified, the data inside the named property mapping storage MUST be

used to determine the property ID of the property. The method differs slightly for string

named properties and numerical named properties.

If the property name specified is the following:

GUID = {0x00062003, 0x0000, 0x0000, { 0x00, 0x00, 0x00, 0xC0, 0x46,

0x00, 0x00, 0x00}}

Name Identifier = 0x811C

Kind = 0

First the GUID is examined to compute the GUID index, as specified in section 2.2.3.2.1.

In this example, the above GUID was found in the second position in the GUID stream, so its

GUID index will be 0x04.

Then, the stream ID is calculated using the stream ID equation for numerical named

properties.

 0x1000 + (Name identifier XOR (GUID index << 1)) MOD 0x1F

= 0x1000 + (0x811C XOR (0x04 << 1)) MOD 0x1F

= 0x1000 + (0x811C XOR 0x08) MOD 0x1F

= 0x1000 + 0x8114 MOD 0x1F

= 0x1000 + 0x1D

30 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

= 0x101D

Then, the property tag is generated as follows

 stream ID << 16 | 0x00000102

= 0x101D << 16 | 0x00000102

= 0x101D0102

The stream name is generated by concatenating "__substg1.0_" and the property tag.

Therefore, the stream name is "__substg1.0_101D0102".

The data inside the stream is an array of 8-byte entries, each with the structure specified in

section 2.2.3.2.4. One of those entries maps to the named property in question and can be

found by comparing the name identifier of the named property with that fetched from the

stream. In this example, the stream "__substg1.0_101D0102" has the following contents:

1C 81 00 00 08 00 05 00 15 85 00 00 06 00 40 00 34 85 00 00 06 00 4A 00 A8

85 00 00 06 00 70 00

The structure specified in section 2.2.3.2.4 is applied to these bytes to obtain the following

entries:

Serial # Name Identifier Prop Index GUID Index Prop Kind

1 0x811C 0x05 0x04 0

2 0x8515 0x40 0x03 0

3 0x8534 0x4A 0x03 0

4 0x85A8 0x70 0x03 0

The entry corresponding to the named property in question is number 1 because the name

identifier from the stream is equal to the property's name identifier.

The property ID is then computed like this:

 0x8000 + Property Index

= 0x8000 + 0x05

= 0x8005

3.3 Custom Attachment Storage

The storage format of attachments that represent data from an arbitrary client application is

controlled by the application itself. For example, a media application may write a completely

different set of streams under the sub-storage than an image manipulation application. The

images below illustrate the structure of the sub-storage for two different types of applications

with the intent of demonstrating that the structure is essentially controlled by the owning

application.

31 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

4 Security Considerations
The .MSG file format specification provides some mechanisms for ensuring that clients read

the right number of bytes from constituent streams.

a. In the case of multi-valued variable length properties, the length stream contains the

lengths of each value. Clients can compare the lengths obtained from there with the actual

length of the value streams. If they are not in sync, it can be assumed that there is data

corruption.

b. In case of the strings stream entries are stored prefixed with their lengths and if any

inconsistency is detected clients can assume that there is data corruption.

However, there are certain inherent security concerns with .MSG files. Some of these are:

a. Possible modification of properties especially those control security related flags.

b. The .MSG file format specification does not provide for any encryption and so data is in

the clear in a .MSG file.

5 Appendix A: Office/Exchange Behavior
The information in this specification is applicable to the following versions of

Office/Exchange:

 Office 2003 with Service Pack 3 applied

 Exchange 2003 with Service Pack 2 applied

 Office 2007 with Service Pack 1 applied

Exchange 2007 with Service Pack 1 applied

Exceptions, if any, are noted below. Unless otherwise specified, any statement of optional

behavior in this specification prescribed using the terms SHOULD or SHOULD NOT implies

Office/Exchange behavior in accordance with the SHOULD or SHOULD NOT prescription.

32 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Unless otherwise specified, the term MAY implies that Office/Exchange does not follow

the prescription.

<1> Properties of type PtypGuid do not have variable length values (they are always 16 bytes

long). However, like variable length properties, they are stored in a stream by themselves in

the .MSG file because the values have a large size. Therefore, they are grouped along with

variable length properties.

<2> The Outlook 2007 SP1 and Outlook 2003 SP3 implementations of the .MSG file format

specification will limit the number of recipients in a .MSG file to 2048. They will fail to open

the .MSG file if the number of recipients is greater than 2048.

<3> The Outlook 2007 SP1 and Outlook 2003 SP3 implementations of the .MSG file format

specification will limit the number of attachments in a .MSG file to 2048. They will fail to

open the .MSG file if the number of attachments is greater than 2048.

<4> If the string named property belongs to the PS_INTERNET_HEADERS [MS-

OXPROPS] property set, then the Outlook 2007 SP1 and Outlook 2003 SP3 implementations

of the .MSG file format specification will convert the Unicode property name to lower case

before computing the equivalent CRC-32 for it.

33 of 33

[MS-OXMSG] - v0.1
.MSG File Format Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

6 Index

Applicability statement, 7

Custom attachment storage, 30

From message object to.MSG file format specification, 24

Glossary, 4

Informative references, 6

Introduction, 4

Named property mapping, 27

Normative references, 5

Office/Exchange behavior, 31

Properties, 8

Property stream, 19

References, 5

Informative references, 6

Normative references, 5

Relationship to protocols and other structures, 7

Security considerations, 31

Storages, 12

Structure examples, 24

Custom attachment storage, 30

From message object to .MSG file format specification, 24

Named property mapping, 27

Structure overview (synopsis), 6

Structures, 8

Properties, 8

Property stream, 19

Storages, 12

Top level structure, 19

Top level structure, 19

Vendor-extensible fields, 8

Versioning and localization, 8

