

1 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

[MS-OXCRPC]:
Wire Format Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each

of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the

technologies described in the Open Specifications and may distribute portions of it in your

implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the

documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:

http://www.microsoft.com/interop/osp) or the Community Promise (available here:
http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if

the technologies described in the Open Specifications are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to

Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard

specifications and network programming art, and assumes that the reader either is familiar with the

aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

Revision Summary

Date
Revision
History

Revision
Class Comments

04/04/2008 0.1 Initial Availability.

04/25/2008 0.2 Revised and updated property names and other

technical content.

06/27/2008 1.0 Initial Release.

08/06/2008 1.01 Revised and edited technical content.

09/03/2008 1.02 Revised and edited technical content.

10/01/2008 1.03 Revised and edited technical content.

12/03/2008 1.04 Revised and edited technical content.

03/04/2009 1.05 Revised and edited technical content.

04/10/2009 2.0 Updated technical content and applicable product
releases.

07/15/2009 3.0 Major Revised and edited for technical content.

3 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

Table of Contents

1 Introduction ... 6
1.1 Glossary...6
1.2 References ...7

1.2.1 Normative References ..7
1.2.2 Informative References ..7

1.3 Protocol Overview ..7
1.3.1 Initiating Communication with the Server ...7
1.3.2 Issuing Remote Operations for Mailbox Data...8
1.3.3 Terminating Communication with the Server...8
1.3.4 Client/Server Communication Lifetime ..8

1.4 Relationship to Other Protocols ...9
1.5 Prerequisites/Preconditions...9
1.6 Applicability Statement... 10
1.7 Versioning and Capability Negotiation ... 10
1.8 Vendor-Extensible Fields .. 10
1.9 Standards Assignments .. 10

2 Messages .. 11
2.1 Transport ... 11
2.2 Common Data Types .. 11

2.2.1 Simple Data Types ... 11
2.2.1.1 CXH ... 11
2.2.1.2 ACXH ... 11
2.2.1.3 BIG_RANGE_ULONG... 11
2.2.1.4 SMALL_RANGE_ULONG .. 12

2.2.2 Structures .. 12
2.2.2.1 RPC_HEADER_EXT ... 12
2.2.2.2 AUX_HEADER ... 12
2.2.2.3 AUX_PERF_REQUESTID .. 14
2.2.2.4 AUX_PERF_SESSIONINFO .. 14
2.2.2.5 AUX_PERF_SESSIONINFO_V2... 15
2.2.2.6 AUX_PERF_CLIENTINFO ... 15
2.2.2.7 AUX_PERF_SERVERINFO .. 17
2.2.2.8 AUX_PERF_PROCESSINFO .. 18
2.2.2.9 AUX_PERF_DEFMDB_SUCCESS... 18
2.2.2.10 AUX_PERF_DEFGC_SUCCESS ... 19
2.2.2.11 AUX_PERF_MDB_SUCCESS ... 19
2.2.2.12 AUX_PERF_MDB_SUCCESS_V2 ... 20
2.2.2.13 AUX_PERF_GC_SUCCESS ... 20
2.2.2.14 AUX_PERF_GC_SUCCESS_V2 ... 21
2.2.2.15 AUX_PERF_FAILURE ... 22
2.2.2.16 AUX_PERF_FAILURE_V2 ... 22
2.2.2.17 AUX_CLIENT_CONTROL .. 23
2.2.2.18 AUX_OSVERSIONINFO<>... 24
2.2.2.19 AUX_EXORGINFO ... 24

3 Protocol Details.. 25
3.1 EMSMDB Server Details .. 25

3.1.1 Abstract Data Model ... 25
3.1.2 Timers ... 26

4 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

3.1.3 Initialization ... 26
3.1.4 Message Processing Events and Sequencing Rules .. 26

3.1.4.1 Opnum0Reserved (opnum 0).. 27
3.1.4.2 EcDoDisconnect (opnum 1) .. 27
3.1.4.3 Opnum2Reserved (opnum 2).. 28
3.1.4.4 Opnum3Reserved (opnum 3).. 28
3.1.4.5 EcRRegisterPushNotification (opnum 4) .. 28
3.1.4.6 Opnum5Reserved (opnum 5).. 29
3.1.4.7 EcDummyRpc (opnum 6).. 29
3.1.4.8 Opnum7Reserved (opnum 7).. 30
3.1.4.9 Opnum8Reserved (opnum 8).. 30
3.1.4.10 Opnum9Reserved (opnum 9).. 30
3.1.4.11 EcDoConnectEx (opnum 10) ... 30
3.1.4.12 EcDoRpcExt2 (opnum 11)... 34
3.1.4.13 Opnum12Reserved (opnum 12) .. 37
3.1.4.14 Opnum13Reserved (opnum 13) .. 37
3.1.4.15 EcDoAsyncConnectEx (opnum 14) .. 37

3.1.5 Timer Events.. 37
3.1.6 Other Local Events ... 37
3.1.7 Extended Buffer Handling ... 38

3.1.7.1 Extended Buffer Format ... 38
3.1.7.1.1 EcDoConnectEx .. 38

3.1.7.1.1.1 rgbAuxIn.. 38
3.1.7.1.1.2 rgbAuxOut ... 38

3.1.7.1.2 EcDoRpcExt2.. 39
3.1.7.1.2.1 rgbIn ... 39
3.1.7.1.2.2 rgbOut ... 39
3.1.7.1.2.3 rgbAuxIn.. 40
3.1.7.1.2.4 rgbAuxOut ... 40

3.1.7.2 Compression Algorithm .. 40
3.1.7.2.1 LZ77 Compression Algorithm .. 41

3.1.7.2.1.1 Compression Algorithm Terminology... 41
3.1.7.2.1.2 Using the Compression Algorithm ... 41
3.1.7.2.1.3 Compression Process.. 41
3.1.7.2.1.4 Compression Process Example.. 42

3.1.7.2.2 DIRECT2 Encoding Algorithm.. 43
3.1.7.2.2.1 Bitmask ... 43
3.1.7.2.2.2 Encoding Metadata ... 43
3.1.7.2.2.3 Metadata Offset.. 43
3.1.7.2.2.4 Match Length ... 44

3.1.7.3 Obfuscation Algorithm .. 46
3.1.7.4 Extended Buffer Packing... 46

3.1.8 Auxiliary Buffer .. 47
3.1.8.1 Client Performance Monitoring .. 47
3.1.8.2 Server Topology Information .. 50

3.1.9 Version Checking.. 51
3.1.9.1 Version Number Comparison .. 51
3.1.9.2 Server Versions.. 52
3.1.9.3 Client Versions ... 53

3.2 EMSMDB Client Details ... 53
3.2.1 Abstract Data Model ... 53
3.2.2 Timers ... 54
3.2.3 Initialization ... 54

5 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

3.2.4 Message Processing Events and Sequencing Rules .. 54
3.2.4.1 Sending EcDoConnectEx ... 54
3.2.4.2 Sending EcDoRpcExt2 .. 55
3.2.4.3 Handling Server Too Busy .. 56
3.2.4.4 Handling Connection Failures.. 56

3.2.5 Timer Events.. 56
3.2.6 Other Local Events ... 56

3.3 AsyncEMSMDB Server Details ... 56
3.3.1 Abstract Data Model ... 56
3.3.2 Timers ... 57
3.3.3 Initialization ... 57
3.3.4 Message Processing Events and Sequencing Rules .. 57

3.3.4.1 EcDoAsyncWaitEx (opnum 0) ... 58
3.3.5 Timer Events.. 58
3.3.6 Other Local Events ... 58

3.4 AsyncEMSMDB Client Details .. 58
3.4.1 Abstract Data Model ... 58
3.4.2 Timers ... 58
3.4.3 Initialization ... 59
3.4.4 Message Processing Events and Sequencing Rules .. 59
3.4.5 Timer Events.. 59
3.4.6 Other Local Events ... 59

4 Protocol Examples ... 60
4.1 Client Connecting to Server .. 60
4.2 Client Issuing ROP Commands to Server... 61
4.3 Client Receiving "Packed" ROP Response from Server ... 63
4.4 Client Disconnecting from Server.. 64

5 Security... 65
5.1 Security Considerations for Implementers... 65
5.2 Index of Security Parameters ... 65

6 Appendix A: Full IDL/ACF ... 66
6.1 IDL .. 66
6.2 ACF.. 68

7 Appendix B: Product Behavior .. 69
7.1 Protocol Sequences .. 70

7.1.1 Exchange Server Support ... 70
7.1.2 Office Client Support .. 70

7.2 Authentication Methods .. 70
7.3 RPC Methods .. 71

7.3.1 Exchange Server Support ... 71
7.3.2 Office Client Support .. 71

7.3.2.1 Accessing Exchange 2003... 71
7.3.2.2 Accessing Exchange 2007... 72

7.4 Client Access Licenses .. 72

8 Change Tracking .. 73

9 Index... 74

6 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

1 Introduction

The Wire Format protocol is specific to the EMSMDB and AsyncEMSMDB protocol interface

between a client and server. This interface has traditionally been used by an Outlook client to

communicate with an Exchange messaging server. This protocol extends Remote Procedure Call
[C706].

1.1 Glossary

The following terms are defined in [MS-OXGLOS]:

ANSI
Asynchronous Context Handle (ACXH)

code page
distinguished name (DN)

dynamic endpoint
endpoint

exception

folder
GUID

handle
HTTP

Incremental Change Synchronization (ICS)

Interface Definition Language (IDL)
locale

mailbox
message

messaging object
Network Data Representation (NDR)

NTLM

opnum
permissions

public folder
recipient

remote procedure call (RPC)

replica
RPC protocol sequence

remote operation (ROP)
ROP request buffer

ROP response buffer

Server object
Session Context Handle (CXH)

stream
store

Unicode
universal unique identifier (UUID)

The following terms are specific to this document:

Session Context: A server-side partitioning for client isolation. All client actions against a server
are scoped to a specific Session Context. All messaging objects and data opened by a client

are isolated to a Session Context.

well-known endpoint: An endpoint that does not change. Well-known endpoint information is

stored as part of the binding handle.

%5bMS-OXGLOS%5d.pdf
http://www.opengroup.org/public/pubs/catalog/c706.htm
%5bMS-OXGLOS%5d.pdf

7 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

Client Access License (CAL): A license that gives a user the right to access the services of the

server. To legally access the server software, a CAL might be required. A CAL is not a software
product

RPC dynamic endpoint: A network-specific server address that is requested and assigned at
run time. For more information, see [C706] part 4

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,

http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

http://www.opengroup.org/public/pubs/catalog/c706.htm.

[MS-OXCFXICS] Microsoft Corporation, "Bulk Data Transfer Protocol Specification", June 2008.

[MS-OXCNOTIF] Microsoft Corporation, "Core Notifications Protocol Specification", June 2008.

[MS-OXCROPS] Microsoft Corporation, "Remote Operations (ROP) List and Encoding Protocol

Specification", June 2008.

[MS-OXCSTOR] Microsoft Corporation, "Store Object Protocol Specification", June 2008.

[MS-OXGLOS] Microsoft Corporation, "Exchange Server Protocols Master Glossary", June 2008.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.

1.2.2 Informative References

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions", July 2006,

http://go.microsoft.com/fwlink/?LinkId=112246.

[MSDN-SOCKADDR] Microsoft Corporation, "sockaddr",

http://go.microsoft.com/fwlink/?LinkId=113717.

1.3 Protocol Overview

This specification describes the RPC interfaces that are used by a messaging client to communicate
with a messaging server to access personal messaging data over the Wire Format protocol. This

protocol is comprised of the EMSMDB and AsyncEMSMDB RPC interfaces.

1.3.1 Initiating Communication with the Server

Before a client can retrieve private mailbox or public folder data from a server on the EMSMDB
interface, it first makes a call to EcDoConnectEx and establishes a Session Context Handle

http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://www.opengroup.org/public/pubs/catalog/c706.htm
%5bMS-OXCFXICS%5d.pdf
%5bMS-OXCNOTIF%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCSTOR%5d.pdf
%5bMS-OXGLOS%5d.pdf
http://www.ietf.org/rfc/rfc2119.txt
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=113717
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf

8 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

(CXH). The Session Context Handle (CXH) is a RPC context handle. The client stores this Session

Context Handle (CXH) and uses it on subsequent RPC calls on the EMSMDB interface. The server
uses the Session Context Handle (CXH) to identify the client and user who is issuing requests and

under which context to perform operations against messaging data.

The EMSMDB interface function EcDoConnectEx is used to create a CXH with the server. The

server verifies that the authentication context used to make the RPC function call EcDoConnectEx

has access rights to perform operations as, or on behalf of, the user whose distinguished name
(DN) is provided on the RPC call. This is done to validate that the client has permission to perform

operations as the user specified in the RPC call. If this access check fails, the server fails the RPC
call with an access denied return code.

If the security check passes, the server creates a Session Context. A CXH that refers to the
Session Context is returned to the client in the response to EcDoConnectEx. The returned CXH is

used in subsequent calls to the server.

1.3.2 Issuing Remote Operations for Mailbox Data

The client retrieves private mailbox or public folder data through the interface function
EcDoRpcExt2. There are no separate interface functions to perform different operations against

mailbox data. A single interface function is used to submit a group of remote operation (ROP)

commands to the server. See [MS-OXCROPS] for more information about ROP commands. The ROP
request operations are tokenized into a request buffer and sent to the server as a byte array. The

server parses the ROP request buffer and performs actions. The response to these actions is then
serialized into a ROP response buffer and returned to the client as a byte array. At the EMSMDB

interface level, the format of these ROP request and response buffers is not understood. See [MS-
OXCROPS] for more information about how to interpret the ROP buffers. The EMSMDB interface

function EcDoRpcExt2 is just the mechanism in which to pass the ROP request buffer to the server.

In the call to EcDoRpcExt2, the client passes the CXH which was created in a successful call to the
interface function EcDoConnectEx. The server uses the CXH to identify who is issuing the remote

operation ROP commands and under which Session Context to perform them.

1.3.3 Terminating Communication with the Server

When a client wants to terminate communication with a server, it calls EcDoDisconnect. In the call
to EcDoDisconnect, the client passes the CXH, which was created in a successful call to the

interface function EcDoConnectEx. It is suggested that the server clean up any Session
Contextdata associated with this CXH.

1.3.4 Client/Server Communication Lifetime

Figure 1 shows a typical example of the client and server communication lifetime. This is a simplified

overview of how the client connects, issues ROP commands, and disconnects from the server.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf

9 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

Figure 1: Client/server communications

1.4 Relationship to Other Protocols

This protocol is dependent upon RPC as specified in [MS-RPCE] and various network protocol
sequences for its transport.

1.5 Prerequisites/Preconditions

The Wire Format protocol is a set of RPC interfaces and has the same prerequisites as specified in

[MS-RPCE].

http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246

10 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

It is assumed that a messaging client has obtained the name of a remote computer that supports

this protocol before these protocols are invoked. How a client does this is outside the scope of this
specification.

1.6 Applicability Statement

The protocol specified in this document is applicable to environments that require access to private

mailbox and/or public folder messaging end-user data.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

Supported Transports: This protocol uses multiple RPC protocol sequences as specified in

section 2.1.

Protocol Versions: The protocol RPC interface EMSMDB has a single version number of 0.81.

The protocol RPC interface AsyncEMSMDB has a single version number of 0.01.

Protocol Versions: The protocol RPC interface EMSMDB has a single interface version, but that

interface has been extended by adding additional methods at the end. The use of these methods
are specified in section 3.1.

Security and Authentication Methods: This protocol supports the following authentication

methods: NTLM, Kerberos, and Negotiate. These authentication methods are specified in
sections 3.1.3 and 3.3.3.

Capability Negotiation: None.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

Parameter Value Reference

EMSMDB

RPC Interface UUID

A4F1DB00-CA47-1067-B31F-00DD010662DA 3.1

AsyncEMSMDB

RPC Interface UUID

5261574A-4572-206E-B268-6B199213B4E4 3.3

RPC/HTTP protocol sequence endpoint 6001 2.1

LRPC protocol sequence endpoint MSExchangeIS_LPC 2.1

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf

11 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

2 Messages

2.1 Transport

This protocol works over the following protocol sequences:

Protocol Sequence

ncalrpc

ncacn_ip_tcp

ncacn_http

This protocol uses well-known endpoints for network protocol sequences "ncalrpc" and

"ncacn_http". The following well-known endpoints are used:

Protocol Sequence Endpoint

ncalrpc MSExchangeIS_LPC

ncacn_http 6001

For all other network protocol sequences, the protocol uses RPC dynamic endpoints as specified in
[MS-OXGLOS].

This protocol MUST use the UUID specified in section 1.9. The RPC version number is 4.0.

This protocol allows any user to establish an authenticated connection to the RPC server using an
authentication method as specified in [MS-RPCE]. The protocol uses the underlying RPC protocol to

retrieve the identity of the caller that made the method call as specified in [MS-RPCE]. The server
uses this identity to perform method-specific access checks.

2.2 Common Data Types

Data types in addition to the RPC base types and definitions specified in [C706] and [MS-RPCE] are

defined in the following sections.

2.2.1 Simple Data Types

2.2.1.1 CXH

typedef [context_handle] void * CXH;

2.2.1.2 ACXH

typedef [context_handle] void * ACXH;

2.2.1.3 BIG_RANGE_ULONG

typedef [range(0x0, 0x40000)] unsigned long BIG_RANGE_ULONG;

%5bMS-OXGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246
http://www.opengroup.org/public/pubs/catalog/c706.htm
http://go.microsoft.com/fwlink/?LinkId=112246

12 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

2.2.1.4 SMALL_RANGE_ULONG

typedef [range(0x0, 0x1008)] unsigned long SMALL_RANGE_ULONG;

2.2.2 Structures

2.2.2.1 RPC_HEADER_EXT

Version (2 bytes): Defines the version of the header. There is only one version of the header at

this time so this value MUST be set to 0x0000.

Flags (2 bytes): Flags that specify how data that follows this header MUST be interpreted. The
following flags are valid:

Flag Value Description

Compressed 0x0001 The data that follows the RPC_HEADER_EXT is compressed. The size of the

data when uncompressed is in field SizeActual. If this flag is not set, the Size
and SizeActual fields MUST be the same.

XorMagic 0x0002 The data following the RPC_HEADER_EXT has been obfuscated. See section
3.1.7.3 for more information about the obfuscation algorithm.

Last 0x0004 Indicates that no other RPC_HEADER_EXT follows the data of the current
RPC_HEADER_EXT. This flag is used to indicate that there are multiple buffers,

each with its own RPC_HEADER_EXT, one after the other.

Size (2 bytes): The total length of the payload data that follows the RPC_HEADER_EXT structure.
This length does not include the length of the RPC_HEADER_EXT structure.

SizeActual (2 bytes): The length of the payload data after it has been uncompressed. This field is
only useful if the Compressed flag is set in the flags field. If the Compressed flag is not set, this

value MUST be equal to Size.

2.2.2.2 AUX_HEADER

Size (2 bytes): Size of the AUX_HEADER structure plus any additional payload data that follows.

Version (1 byte): Version information of the payload data that follows the AUX_HEADER. This

value in conjunction with the Type field determines which structure to use to interpret the data that
follows the header.

13 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

Version Value

AUX_VERSION_1 0x01

AUX_VERSION_2 0x02

Type (1 byte): Type of payload data that follows the AUX_HEADER. This value in conjunction with

the Version field determines which structure to use to interpret the data that follows the header.
When several of the types distinguish between foreground (FG), background (BG), and global

catalog (GC).

The following is a list of block types and the corresponding structure that follows the AUX_HEADER
when the Version field is AUX_VERSION_1.

Type Value Payload

AUX_TYPE_PERF_REQUESTID 0x01 AUX_PERF_REQUESTID

AUX_TYPE_PERF_CLIENTDINFO 0x02 AUX_PERF_CLIENTINFO

AUX_TYPE_PERF_SERVERINFO 0x03 AUX_PERF_SERVERINFO

AUX_TYPE_PERF_SESSIONINFO 0x04 AUX_PERF_SESSIONINFO

AUX_TYPE_PERF_DEFMDB_SUCCESS 0x05 AUX_PERF_DEFMDB_SUCCESS

AUX_TYPE_PERF_DEFGC_SUCCESS 0x06 AUX_PERF_DEFGC_SUCCESS

AUX_TYPE_PERF_MDB_SUCCESS 0x07 AUX_PERF_MDB_SUCCESS

AUX_TYPE_PERF_GC_SUCCESS 0x08 AUX_PERF_GC_SUCCESS

AUX_TYPE_PERF_FAILURE 0x09 AUX_PERF_FAILURE

AUX_TYPE_CLIENT_CONTROL 0x0A AUX_CLIENT_CONTROL

AUX_TYPE_PERF_PROCESSINFO 0x0B AUX_PERF_PROCESSINFO

AUX_TYPE_PERF_BG_DEFMDB_SUCCESS 0x0C AUX_PERF_DEFMDB_SUCCESS

AUX_TYPE_PERF_BG_DEFGC_SUCCESS 0x0D AUX_PERF_DEFGC_SUCCESS

AUX_TYPE_PERF_BG_MDB_SUCCESS 0x0E AUX_PERF_MDB_SUCCESS

AUX_TYPE_PERF_BG_GC_SUCCESS 0x0F AUX_PERF_GC_SUCCESS

AUX_TYPE_PERF_BG_FAILURE 0x10 AUX_PERF_FAILURE

AUX_TYPE_PERF_FG_DEFMDB_SUCCESS 0x11 AUX_PERF_DEFMDB_SUCCESS

AUX_TYPE_PERF_FG_DEFGC_SUCCESS 0x12 AUX_PERF_DEFGC_SUCCESS

AUX_TYPE_PERF_FG_MDB_SUCCESS 0x13 AUX_PERF_MDB_SUCCESS

AUX_TYPE_PERF_FG_GC_SUCCESS 0x14 AUX_PERF_GC_SUCCESS

AUX_TYPE_PERF_FG_FAILURE 0x15 AUX_PERF_FAILURE

AUX_TYPE_OSVERSIONINFO 0x16 AUX_OSVERSIONINFO

14 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

Type Value Payload

AUX_TYPE_EXORGINO 0x17 AUX_EXORGINFO

The following is a list of block types and the corresponding structure that follows the AUX_HEADER

when the Version field is AUX_VERSION_2.

Type Value Payload

AUX_TYPE_PERF_SESSIONINFO 0x04 AUX_PERF_SESSIONINFO_V2

AUX_TYPE_PERF_MDB_SUCCESS 0x07 AUX_PERF_MDB_SUCCESS_V2

AUX_TYPE_PERF_GC_SUCCESS 0x08 AUX_PERF_GC_SUCCESS_V2

AUX_TYPE_PERF_FAILURE 0x09 AUX_PERF_FAILURE_V2

Any other block type and version combination that is not understood MUST be ignored.

2.2.2.3 AUX_PERF_REQUESTID

SessionID (2 bytes): Session identification number.

RequestID (2 bytes): Request identification number.

2.2.2.4 AUX_PERF_SESSIONINFO

SessionID (2 bytes): Session identification number.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can fill
this field with any value when writing the stream. The server MUST ignore the value of this field

when reading the stream.

SessionGuid (16 bytes): GUID representing the client session to associate with the session

identification number in field SessionID.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf

15 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

2.2.2.5 AUX_PERF_SESSIONINFO_V2

SessionID (2 bytes): Session identification number.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can fill

this field with any value when writing the stream. The server MUST ignore the value of this field
when reading the stream.

SessionGuid (16 bytes): GUID representing the client session to associate with the session
identification number in field SessionID.

ConnectionID (4 bytes): Connection identification number.

2.2.2.6 AUX_PERF_CLIENTINFO

AdapterSpeed (4 bytes): Speed of client computer's network adaptor (kbits/s).

16 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

ClientID (2 bytes): Client-assigned identification number.

MachineNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to
the MachineName field.

UserNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to the
UserName field.

ClientIPSize (2 bytes): Size of the client IP address referenced by the ClientIPOffset field. The

client IP address is located in the ClientIP field.

ClientIPOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to the

ClientIP field.

ClientIPMaskSize (2 bytes): Size of the client IP subnet mask referenced by the

ClientIPMaskOffset field. The client IP mask is located in the ClientIPMask field.

ClientIPMaskOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to

the ClientIPMask field. The size of the IP subnet mask is found in the ClientIPMaskSize field.

AdapterNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to
the AdapterName field.

MacAddressSize (2 bytes): Size of the network adapter MAC address referenced by the
MacAddressOffset field. The network adapter MAC address is located in the MacAddress field.

MacAddressOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to the

MacAddress field.

ClientMode (2 bytes): Determines the mode in which the client is running. The following table

specifies valid values.

Mode Value Description

CLIENTMODE_UNKNOWN 0x00 Client is not designating a mode of operation.

CLIENTMODE_CLASSIC 0x01 Client is running in classic online mode.

CLIENTMODE_CACHED 0x02 Client is running in cached mode.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can fill

this field with any value when writing the stream. The server MUST ignore the value of this field

when reading the stream.

MachineName (variable): A null-terminated Unicode string that contains the client computer

name. This variable field is offset from the beginning of the AUX_HEADER structure by the
MachineNameOffset value.

UserName (variable): A null-terminated Unicode string that contains the user's account name
name. This variable field is offset from the beginning of the AUX_HEADER structure by the

UserNameOffset value.

ClientIP (variable): The client's IP address. This variable field is offset from the beginning of the
AUX_HEADER structure by the ClientIPOffset value. The size of the client IP address data is

found in the ClientIPSize field.

%5bMS-OXGLOS%5d.pdf

17 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

ClientIPMask (variable): The client's IP subnet mask. This variable field is offset from the

beginning of the AUX_HEADER structure by the ClientIPMaskOffset value. The size of the client
IP mask data is found in the ClientIPMaskSize field.

AdapterName (variable): A null-terminated Unicode string that contains the client network
adapter name. This variable field is offset from the beginning of the AUX_HEADER structure by the

AdapterNameOffset value.

MacAddress (variable): The client's network adapter MAC address. This variable field is offset
from the beginning of the AUX_HEADER structure by the MacAddressOffset value. The size of

the network adapter MAC address data is found in the MacAddressSize field.

2.2.2.7 AUX_PERF_SERVERINFO

ServerID (2 bytes): Client assigned server identification number.

ServerType (2 bytes): Server type assigned by client. The following table specifies valid values.

Type Value Description

SERVERTYPE_UNKNOWN 0x00 Unknown server type.

SERVERTYPE_PRIVATE 0x01 Client server connection servicing private mailbox data.

SERVERTYPE_PUBLIC 0x02 Client server connection servicing public folder data.

SERVERTYPE_DIRECTORY 0x03 Client server connection servicing directory data.

SERVERTYPE_REFERRAL 0x04 Client server connection servicing referrals.

ServerDNOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to the

ServerDN field.

ServerNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to

the ServerName field.

ServerDN (variable): A null-terminated Unicode string that contains the distinguished name (DN)

of the server. This variable field is offset from the beginning of the AUX_HEADER structure by the
ServerDNOffset value.

ServerName (variable): A null-terminated Unicode string that contains the server name. This

variable field is offset from the beginning of the AUX_HEADER structure by the
ServerNameOffset value.

18 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

2.2.2.8 AUX_PERF_PROCESSINFO

ProcessID (2 bytes): Client-assigned process identification number.

Reserved 1 (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can

fill this field with any value when writing the stream. The server MUST ignore the value of this field
when reading the stream.

ProcessGuid (16 bytes): GUID representing the client process to associate with the process

identification number in field ProcessID.

ProcessNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to

the ProcessName field.

Reserved 2 (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can

fill this field with any value when writing the stream. The server MUST ignore the value of this field
when reading the stream.

ProcessName (variable): A null-terminated Unicode string that contains the client process name.

This variable field is offset from the beginning of the AUX_HEADER structure by the
ProcessNameOffset value.

2.2.2.9 AUX_PERF_DEFMDB_SUCCESS

TimeSinceRequest (4 bytes): Number of milliseconds since successful request occurred.

TimeToCompleteRequest (4 bytes): Number of milliseconds the successful request took to

complete.

RequestID (2 bytes): Request identification number.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can fill
this field with any value when writing the stream. The server MUST ignore the value of this field

when reading the stream.

19 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

2.2.2.10 AUX_PERF_DEFGC_SUCCESS

ServerID (2 bytes): Server identification number.

SessionID (2 bytes): Session identification number.

TimeSinceRequest (4 bytes): Number of milliseconds since successful request occurred.

TimeToCompleteRequest (4 bytes): Number of milliseconds the successful request took to

complete.

RequestOperation (1 byte): Client-defined operation that was successful.

Reserved (3 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can fill

this field with any value when writing the stream. The server MUST ignore the value of this field
when reading the stream.

2.2.2.11 AUX_PERF_MDB_SUCCESS

ClientID (2 bytes): Client identification number.

ServerID (2 bytes): Server identification number.

SessionID (2 bytes): Session identification number.

RequestID (2 bytes): Request identification number.

TimeSinceRequest (4 bytes): Number of milliseconds since successful request occurred.

TimeToCompleteRequest (4 bytes): Number of milliseconds the successful request took to
complete.

20 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

2.2.2.12 AUX_PERF_MDB_SUCCESS_V2

PrcoessID (2 bytes): Process identification number.

ClientID (2 bytes): Client identification number.

ServerID (2 bytes): Server identification number.

SessionID (2 bytes): Session identification number.

RequestID (2 bytes): Request identification number.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can fill
this field with any value when writing the stream. The client MUST ignore the value of this field

when reading the stream.

TimeSinceRequest (4 bytes): Number of milliseconds since successful request occurred.

TimeToCompleteRequest (4 bytes): Number of milliseconds the successful request took to
complete.

2.2.2.13 AUX_PERF_GC_SUCCESS

ClientID (2 bytes): Client identification number.

ServerID (2 bytes): Server identification number.

SessionID (2 bytes): Session identification number.

Reserved 1 (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can

fill this field with any value when writing the stream. The server MUST ignore the value of this field

when reading the stream.

21 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

TimeSinceRequest (4 bytes): Number of milliseconds since successful request occurred.

TimeToCompleteRequest (4 bytes): Number of milliseconds the successful request took to
complete.

RequestOperation (1 byte): Client-defined operation that was successful.

Reserved 2 (3 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can

fill this field with any value when writing the stream. The server MUST ignore the value of this field

when reading the stream.

2.2.2.14 AUX_PERF_GC_SUCCESS_V2

ProcessID (2 bytes): Process identification number.

ClientID (2 bytes): Client identification number.

ServerID (2 bytes): Server identification number.

SessionID (2 bytes): Session identification number.

TimeSinceRequest (4 bytes): Number of milliseconds since successful request occurred.

TimeToCompleteRequest (4 bytes): Number of milliseconds the successful request took to
complete.

RequestOperation (1 byte): Client-defined operation that was successful.

Reserved (3 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can fill

this field with any value when writing the stream. The server MUST ignore the value of this field

when reading the stream.

22 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

2.2.2.15 AUX_PERF_FAILURE

ClientID (2 bytes): Client identification number.

ServerID (2 bytes): Server identification number.

SessionID (2 bytes): Session identification number.

RequestID (2 bytes): Request identification number.

TimeSinceRequest (4 bytes): Number of milliseconds since failure request occurred.

TimeToFailRequest (4 bytes): Number of milliseconds the failure request took to complete.

ResultCode (4 bytes): Error code return of failed request.

RequestOperation (1 byte): Client-defined operation that failed.

Reserved (3 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can fill

this field with any value when writing the stream. The server MUST ignore the value of this field
when reading the stream.

2.2.2.16 AUX_PERF_FAILURE_V2

ProcessID (2 bytes): Process identification number.

ClientID (2 bytes): Client identification number.

23 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

ServerID (2 bytes): Server identification number.

SessionID (2 bytes): Session identification number.

RequestID (2 bytes): Request identification number.

Reserved 1 (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can
fill this field with any value when writing the stream. The server MUST ignore the value of this field

when reading the stream.

TimeSinceRequest (4 bytes): Number of milliseconds since failure request occurred.

TimeToFailRequest (4 bytes): Number of milliseconds the failure request took to complete.

ResultCode (4 bytes): Error code return of failed request.

RequestOperation (1 byte): Client-defined operation that failed.

Reserved 2 (3 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can
fill this field with any value when writing the stream. The server MUST ignore the value of this field

when reading the stream.

2.2.2.17 AUX_CLIENT_CONTROL

EnableFlags (4 bytes): The following table describes the flags that instruct the client to either

enable or disable behavior. To disable behavior, do not set the flag to the specified value.

Flag Value Description

ENABLE_PERF_SENDTOSERVER 0x00000001 Client MUST start sending performance information to
server.

ENABLE_PERF_SENDTOMAILBOX 0x00000002 Client MUST start sending performance information as

logs to a special location in the user's mailbox.

ENABLE_COMPRESSION 0x00000004 Client MUST compress information up to the server.
Compression MUST ordinarily be the default behavior,
but this allows the server to 'disable' compression.

ENABLE_HTTP_TUNNELING 0x00000008 Client MUST utilize RPC/HTTP if configured.

ENABLE_PERF_SENDGCDATA 0x00000010 Client MUST include performance data of the client
that is communicating with the directory service.

ExpiryTime (4 bytes): The number of milliseconds the client SHOULD keep unsent performance

data before the data is expired. Expired data is not transmitted to the server. This prevents the
server from receiving stale performance information that is stored on the client.

%5bMS-OXGLOS%5d.pdf

24 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

2.2.2.18 AUX_OSVERSIONINFO<>

OSVersionInfoSize (4 bytes): Size of the AUX_OSVERSIONINFO structure.

MajorVersion (4 bytes): Major version number of the operating system of the server.

MinorVersion (4 bytes): Minor version number of the operating system of the server.

BuildNumber (4 bytes): Build number of the operating system of the server.

Reserved1 (132 bytes): Reserved. Content MUST be ignored by client.

ServicePackMajor (2 bytes): Major version number of the latest operating system service pack

that is installed on server.

ServicePackMinor (2 bytes): Minor version number of the latest operating system service pack

that is installed on server.

Reserved2 (4 bytes): Reserved. Content MUST be ignored by client.

2.2.2.19 AUX_EXORGINFO

OrgFlags (4 bytes): Flags indicating the server organizational information. The following table

specifies the valid values.

Flag Value Description

PUBLIC_FOLDERS_ENABLED 0x00000001 Organization has public folders.

25 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

3 Protocol Details

The Wire Format protocol is comprised of two RPC interfaces: EMSMDB and AsyncEMSMDB. This

section describes the details of each interface.

For some functionality through the EMSMDB interface, the client is required to call interface method
EcDoConnectEx first to establish a Session Context Handle (CXH). The CXH is an RPC context

handle. To establish a CXH, a call to EcDoConnectEx MUST be successful. The following table lists
all method calls that require a valid CXH.

CXH Based Methods Interface

EcDoDisconnect EMSMDB

EcRRegisterPushNotification EMSMDB

EcDoConnectEx EMSMDB

EcDoRpcExt2 EMSMDB

EcDoAsyncConnectEx EMSMDB

For some functionality through the AsyncEMSMDB interface, the client is required to call specific
interface methods first to establish an Asynchronous Context Handle (ACXH). The ACXH is an

RPC context handle. To establish an ACXH, a call to EcDoAsyncConnectEx on the EMSMDB

interface MUST be successful. The following table lists all method calls that require a valid ACXH
context handle.

ACXH Based Methods Interface

EcDoAsyncWaitEx AsyncEMSMDB

3.1 EMSMDB Server Details

The server responds to messages it receives from the client.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

Some methods on this interface require CXH information to be stored on the server and used across

multiple interface calls for a long duration of time. For these method calls, this protocol is stateful.
The server MUST store this Session Context information and provide a CXH to the client to make

subsequent interface calls by using this same Session Context information.

The server MUST keep a list of all active sessions and their associated Session Context information.

Each Session Context MUST be identified by a CXH. After a Session Context has been established, a

client can access messaging resources through this Session Context. The server MUST keep track of
all open resources or any state information specific to the session on the Session Context. This can

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf

26 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

include but is not limited to resources, such as folders, messages, tables, attachments, streams,

associated Asynchronous Context Handles (ACXHs), and notification callbacks.

The server MUST isolate all resources associated with one Session Context from all other Session

Contexts on the server. Access to resources on one Session Context MUST NOT be allowed using a
CXH of another Session Context.

When the CXH is destroyed or the client connection is lost, the Session Contextand all Session

Context information MUST be destroyed, all open resources MUST be closed, and all Server objects
that are associated with the Session Context MUST be released.

3.1.2 Timers

None.

3.1.3 Initialization

The server MUST first register the different protocol sequences that will allow the server to
communicate with the client. This is done by calling the RPC function RpcServerUseProtseqEp.

For protocol sequences and details about this function, see [MS-RPCE]. The supported protocol
sequences are specified in section 2.1. Note some protocol sequences use named endpoints, which

are also specified in section 2.1.

The server MUST register the different authentication methods that are allowed on the EMSMDB
interface. This is done by calling the RPC function RpcServerRegisterAuthInfo. For details about

this function and the authentication methods, see [MS-RPCE].

The server MUST start listening for RPC calls by calling RPC function RpcServerListen. For details

about this function, see [MS-RPCE].

The server MUST register the EMSMDB interface. This is done by calling the RPC function
RpcServerRegisterIfEx. For details about this function, see [MS-RPCE].

The last step is to register the EMSMDB interface to all the registered binding handles created
previously in calls to RpcServerUseProtseq or RpcServerUseProtseqEp. This is done by first

acquiring all the binding handle information through RPC function RpcServerInqBindings and then
calling RPC function RpcEpRegister with the binding information. For details about these functions,

see [MS-RPCE].

3.1.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict Network Data
Representation (NDR) data consistency check at target level 5.0, as specified in [MS-RPCE]

section 3.

The following table lists the methods that this interface includes. The term "Reserved" in the table
means that it is recommended the client not send the opnum.

Method opnum Description

Opnum0Reserved 0 Reserved.

EcDoDisconnect 1 Closes a Session Context with the server. The Session
Context is destroyed and all associated server state, objects,

and resources that are associated with the Session Context
are released. The method requires an active Session Context

%5bMS-OXGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=112246
%5bMS-OXGLOS%5d.pdf

27 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

Method opnum Description

Handle (CXH) to be returned from EcDoConnectEx.

Opnum2Reserved 2 Reserved.

Opnum3Reserved 3 Reserved.

EcRRegisterPushNotification 4 Registers a callback address with the server for a Session
Context. The callback address is used to notify the client of a

pending event on the server. The method requires an active
CXH to be returned from EcDoConnectEx.

Opnum5Reserved 5 Reserved.

EcDummyRpc 6 This call does nothing. A client can use it to determine
whether it can communicate with the server.

Opnum7Reserved 7 Reserved.

Opnum8Reserved 8 Reserved.

Opnum9Reserved 9 Reserved.

EcDoConnectEx 10 Creates a CXH on the server to be used in subsequent calls
to EcDoDisconnect, EcDoRpcExt2, and
EcDoAsyncConnectEx.

EcDoRpcExt2 11 Passes generic remote operation (ROP) commands to the
server for processing within a Session Context. The method

requires an active CXH to be returned from
EcDoConnectEx.

Opnum12Reserved 12 Reserved.

Opnum13Reserved 13 Reserved.

EcDoAsyncConnectEx 14 Binds a CXH that is returned in EcDoConnectEx to a new
Asynchronous Context Handle (ACXH) which can be used in
calls to EcDoAsyncWaitEx in interface AsyncEMSMDB.

The method requires an active Session Context handle to be
returned from EcDoConnectEx.

3.1.4.1 Opnum0Reserved (opnum 0)

The Opnum0Reserved method is reserved. It is recommended that the method not be used.

3.1.4.2 EcDoDisconnect (opnum 1)

The method EcDoDisconnect closes a Session Context with the server. The Session Context is

destroyed and all associated server state, objects, and resources that are associated with the
Session Context are released. This call requires an active Session Context Handle (CXH) to be

returned from method EcDoConnectEx.

long __stdcall EcDoDisconnect(

 [in, out, ref] CXH * pcxh

);

28 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

pcxh: On input, contains the CXH of the Session Context that the client wants to disconnect. On

output, the server MUST clear the CXH to a zero value. Setting the value to zero instructs the RPC
layer of the server to destroy the RPC context handle.

Error Values: If the method succeeds, the return value is 0. If the method fails, the return value is
an implementation-specific error code.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC

protocol [MS-RPCE].

3.1.4.3 Opnum2Reserved (opnum 2)

The Opnum2Reserved method is reserved. It is recommended that the method not be used.

3.1.4.4 Opnum3Reserved (opnum 3)

The Opnum3Reserved method is reserved. It is recommended that the method not be used.

3.1.4.5 EcRRegisterPushNotification (opnum 4)

The method EcRRegisterPushNotification registers a callback address with the server for a
Session Context. The callback address is used to notify the client of pending events on the server.

This call requires an active Session Context Handle (CXH) to be returned from method

EcDoConnectEx.<1>

The server MUST store the callback address and the opaque context data in the Session Context.

Whenever the server wants to notify the client of pending events, it sends a packet containing just
the opaque context data to the callback address. The callback address specifies which network

transport is to be used to send the data packet.

For more information about notification handling, see [MS-OXCNOTIF].

long __stdcall EcRRegisterPushNotification(

 [in, out, ref] CXH * pcxh,

 [in] unsigned long iRpc,

 [in, size_is(cbContext)]unsigned char rgbContext[],

 [in] unsigned short cbContext,

 [in] unsigned long grbitAdviseBits,

 [in, size_is(cbCallbackAddress)] unsigned char rgbCallbackAddress[],

 [in] unsigned short cbCallbackAddress,

 [out] unsigned long *hNotification

);

pcxh: On input, the client MUST pass a valid CXH that was created by calling EcDoConnectEx. The

server uses the CXH to identify the Session Context to use for this call. On output, the server MUST
return the same CXH on success.

The server can destroy the CXH by returning a zero CXH. The server might want to destroy the CXH
for the following reasons:

The CXH that was passed in is invalid.

An attempt was made to access a mailbox that is in the process of being moved.

iRpc: The server MUST completely ignore this value. The client MUST pass a value of 0x00000000.

%5bMS-OXGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=112246
%5bMS-OXCNOTIF%5d.pdf

29 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

rgbContext: This parameter contains opaque client-generated context data that is sent back to the

client at the callback address, passed in parameter rgbCallbackAddress, when the server wants to
notify the client of pending event information. The server MUST save this data within the Session

Context and use it when sending a notification to the client.

cbContext: This parameter contains the size of the opaque client context data that is passed in

parameter rgbContext. The server MUST fail this call with error code ecTooBig if this parameter is

larger than 0x00000010.

grbitAdviseBits: This parameter MUST be 0xFFFFFFFF.

rgbCallbackAddress: This parameter contains the callback address for the server to use to notify
the client of a pending event. The size of this data is in the parameter cbCallbackAddress.

The data contained in this parameter follows the format of a sockaddr structure. For information
about the sockaddr structure, see [MSDN-SOCKADDR].

The server supports the address families AF_INET and AF_INET6 for a callback address that

corresponds to the protocol sequence types that are specified in section 2.1.

If an address family is requested that is not supported, the server MUST return error code

ecInvalidParam. If the address family is supported, but the communications stack of the server does
not support the address type, the server MUST return error code ecNotSupported.

cbCallbackAddress: This parameter contains the length of the callback address in parameter

rgbCallbackAddress. The size of this parameter depends on the address family being used. If this
size does not correspond to the sockaddr size based on address family, the server MUST return

error code ecInvalidParam.

hNotification: If the call completes successfully, this output parameter will contain a handle to the

notification callback on the server.

Error Codes: If the method succeeds, the return value is 0. If the method fails, the error codes

listed in the following table are returned. Additional implementation-specific error codes might be

returned.

Name Value Meaning

ecInvalidParam 0x80070057 A parameter passed was not valid for the call.

ecNotSupported 0x80040102 The callback address is not support on the server.

ecTooBig 0x80040305 Opaque context data is too large.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol

[MS-RPCE].

3.1.4.6 Opnum5Reserved (opnum 5)

The Opnum5Reserved method is reserved. It is recommended that the method not be used.

3.1.4.7 EcDummyRpc (opnum 6)

The method EcDummyRpc does nothing. A client can use it to determine if it can communicate

with the server.

http://go.microsoft.com/fwlink/?LinkId=113717
http://go.microsoft.com/fwlink/?LinkId=112246

30 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

long __stdcall EcDummyRpc(

 [in] handle_t hBinding

);

hBinding: A valid RPC binding handle.

Error Codes: The function MUST always succeed and return 0.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol

[MS-RPCE].

3.1.4.8 Opnum7Reserved (opnum 7)

The Opnum7Reserved method is reserved. It is recommended that the method not be used.

3.1.4.9 Opnum8Reserved (opnum 8)

The Opnum8Reserved method is reserved. It is recommended that the method not be used.

3.1.4.10 Opnum9Reserved (opnum 9)

The Opnum9Reserved method is reserved. It is recommended that the method not be used.

3.1.4.11 EcDoConnectEx (opnum 10)

The EcDoConnectEx method establishes a new Session Context with the server. The Session
Context is persisted on the server until the client disconnects by using EcDoDisconnect. This

method returns a Session Context Handle (CXH) to be used by a client in subsequent calls.

long __stdcall EcDoConnectEx(

 [in] handle_t hBinding,

 [out, ref] CXH * pcxh,

 [in, string] unsigned char * szUserDN,

 [in] unsigned long ulFlags,

 [in] unsigned long ulConMod,

 [in] unsigned long cbLimit,

 [in] unsigned long ulCpid,

 [in] unsigned long ulLcidString,

 [in] unsigned long ulLcidSort,

 [in] unsigned long ulIcxrLink,

 [in] unsigned short usFCanConvertCodePages,

 [out] unsigned long * pcmsPollsMax,

 [out] unsigned long * pcRetry,

 [out] unsigned long * pcmsRetryDelay,

 [out] unsigned short * picxr,

 [out, string] unsigned char **szDNPrefix,

 [out, string] unsigned char **szDisplayName,

 [in] unsigned short rgwClientVersion[3],

 [out] unsigned short rgwServerVersion[3],

 [out] unsigned short rgwBestVersion[3],

 [in, out] unsigned long * pulTimeStamp,

 [in, size_is(cbAuxIn)] unsigned char rgbAuxIn[],

 [in] unsigned long cbAuxIn,

 [out, length_is(*pcbAuxOut), size_is(*pcbAuxOut)] unsigned char rgbAuxOut[],

 [in, out] SMALL_RANGE_ULONG *pcbAuxOut

http://go.microsoft.com/fwlink/?LinkId=112246

31 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

);

hBinding: A valid RPC binding handle.

pcxh: On success, the server MUST return a unique value to be used as a CXH. This unique value
serves as the CXH for the client.

On failure, the server MUST return a zero value as the CXH.

szUserDN: User's distinguished name (DN). String containing the DN of the user who is making the

EcDoConnectEx call in a directory service. Value: "/o=Microsoft/ou=First Administrative

Group/cn=recipients/cn=janedow".

ulFlags: For ordinary client calls this value MUST be 0x00000000.

Value Meaning

0x00000000 Ordinary client connection.

0x00000001 Administrator privilege requested for connection.

ulConMod: The connection modulus is a client-derived 32-bit hash value of the DN passed in field

szUserDN and can be used by the server to decide which public folder replica to use when
accessing public folder information when more than one replica of a folder exists. The hash can be

used to distribute client access across replicas in a deterministic way for load balancing.

cbLimit: This field is reserved. A client MUST pass a value of 0x00000000.

ulCpid: The code page in which text data is sent if Unicode format is not requested by the client on

subsequent calls using this Session Context.

ulLcidString: The local ID for everything other than sorting.

ulLcidSort: The local ID for sorting.

ulIcxrLink: This value is used to link the Session Context created by this call with an existing

Session Context on the server. If no session linking is requested, this value will be 0xFFFFFFFF. To
link to an existing Session Context, this value is the session index value returned in field piCxr from

a previous EcDoConnectEx call. In addition to passing the session index, the value in

pulTimeStamp will be returned in the pulTimeStamp field from the previous EcDoConnectEx
call. These two values MUST be used by the server to identify an active session with the same

session index and session creation time stamp. If a session is found, the server MUST link the
Session Context created by this call with the one found.<2>

A server allows Session Context linking for the following reasons:

1. To consume a single Client Access License (CAL) for all the connections made from a single
client computer. This gives a client the ability to open multiple independent connections using

more than one Session Context on the server, but be seen to the server as only consuming a
single CAL.

2. To get pending notification information for other sessions on the same client computer. For
details, see RopPending in [MS-OXCNOTIF].

Note that the ulIcxrLink parameter is defined as a 32-bit value. Other than passing 0xFFFFFFFF for

no Session Context linking, the server only uses the low-order 16 bits as the session index. This

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCNOTIF%5d.pdf

32 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

value is the value returned in piCxr from a previous EcDoConnectEx call, which is the session

index and defined as a 16-bit value.

usFCanConvertCodePages: This field is reserved. The client MUST pass a value of 0x01.

pcmsPollsMax: The server returns the number of milliseconds that a client waits between polling
the server for event information. If the client or server does not support making asynchronous RPC

calls for notifications (see EcDoAsyncWaitEx), or the client is unable to receive notifications via

UDP datagrams (see EcRRegisterPushNotifications), the client can poll the server to determine
whether any events are pending for the client. For details about notifications, see [MS-OXNOTIF].

pcRetry: The server returns the number of times a client retries future RPC calls using the CXH
returned in this call. This is for client RPC calls that fail with RPC status code

RPC_S_SERVER_TOO_BUSY. This is a suggested retry count for the client and is not to be enforced
by the server.

pcmsRetryDelay: The server returns the number of milliseconds a client waits before retrying a

failed RPC call. If any future RPC call to the server using the CXH returned in this call fails with RPC
status code RPC_S_SERVER_TOO_BUSY, it waits the number of milliseconds specified in this output

parameter before retrying the call. The number of times a client retries is returned in parameter
pcRetry. This is a suggested delay for the client and is not to be enforced by the server.

piCxr: The server returns a session index value that is associated with the CXH returned from this

call. This value in conjunction with the session creation time stamp value returned in
pulTimeStamp will be passed to a subsequent EcDoConnectEx call, if the client wants to link two

Session Contexts. The server MUST NOT assign two active Session Contexts the same session index
value. The server is free to return any 16-bit value for the session index.

The server MUST also use the session index when returning a RopPending response command on
calls to EcDoRpcExt2 to tell the client which Session Context has pending notifications. If Session

Contexts are linked, a RopPending can be returned for any linked Session Context. For details about

RopPending, see [MS-OXCROPS] and [MS-OXCNOTIF].

szDNPrefix: The server returns the distinguished name (DN) of the server.

szDisplayName: The server returns the display name of the user associated with the szUserDN
parameter.

rgwClientVersion: The client passes the client protocol version the server uses to determine what

protocol functionality the client supports. For more information about how version numbers are
interpreted from the wire data, see section 3.1.9.

rgwServerVersion: The server returns the server protocol version the client uses to determine
what protocol functionality the server supports. For details about how version numbers are

interpreted from the wire data, see section 3.1.9.

rgwBestVersion: The server returns the minimum client protocol version the server supports. This

information is useful if the EcDoConnectEx call fails with return code ecVersionMismatch. On

success, the server returns the value passed in rgwClientVersion by the client. The server cannot
perform any client protocol version negotiation. The server can either return the minimum client

protocol version required to access the server and fail the call with ecVersionMismatch, or the
server can allow the client and return the value passed by the client in rgwClientVersion. It is up

to the server implementation to set the minimum client protocol version that is supported by the

server. For details about how version numbers are interpreted from the wire data, see section 3.1.9.

pulTimeStamp: On input, this parameter and parameter ulIcxrLink are used for linking the Session

Context created by this call with an existing Session Context. If the ulIcxrLink parameter is not

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXOTASK%5d.pdf

33 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

0xFFFFFFFF, the client MUST pass in the pulTimeStamp value returned from the server on a

previous call to EcDoConnectEx (see the ulIcxrLink and piCxr parameters for more details). If the
server supports Session Context linking, the server verifies that there is a Session Context state

with the unique identifier ulIcxrLink and it has a creation time stamp equal to the value passed in
this parameter. If so, the server MUST link the Session Context created by this call with the one

found. If no such Session Context state is found, the server does not fail the EcDoConnectEx call,

but simply not do linking.<3>

On output, the server has to return a time stamp in which the new Session Context was created.

The server saves the Session Context creation time stamp within the Session Context s tate for later
use if a client attempts to do Session Context linking.

rgbAuxIn: This parameter contains an auxiliary payload buffer. The auxiliary payload buffer is
prefixed by an RPC_HEADER_EXT structure. Information stored in this header determines how to

interpret the data following the header. The length of the auxiliary payload buffer that includes the

RPC_HEADER_EXT header is contained in parameter cbAuxIn.

See section 3.1.7 for details about how to access the embedded auxiliary payload buffer. See

section 3.1.8 for details about how to interpret the auxiliary payload data.

cbAuxIn: On input, this parameter contains the length of the auxiliary payload buffer passed in the

rgbAuxIn parameter. The server MUST fail with the RPC status code RPC_X_BAD_STUB_DATA

(0x000006F7), if this value on input is larger than 0x00001008 bytes in size. For more information,
see [C706].<4>

rgbAuxOut: On output, the server can return auxiliary payload data to the client. The server MUST
include an RPC_HEADER_EXT header before the auxiliary payload data.

See section 3.1.7 for details about how to access the embedded auxiliary payload buffer. See
section 3.1.8 for details about how to interpret the auxiliary payload data.

pcbAuxOut: On input, this parameter contains the maximum length of the rgbAuxOut buffer. The

server MUST fail with the RPC status code RPC_X_BAD_STUB_DATA (0x000006F7) if this value on
input is larger than 0x00001008. For more information, see [C706].

On output, this parameter contains the size of the data to be returned in the rgbAuxOut buffer.

Error Values: If the method succeeds, the return value is 0. If the method fails, the return value is

an implementation-specific error code or one of the protocol-defined error codes listed in the

following table.

Name Value Meaning

ecRpcAuthentication 0x000004B6 The szUserDN parameter does not reference a user or
references a guest user or a built-in user.

ecNotEncrypted 0x00000970 The server is configured to require encryption and the binding
handle, hBinding, authentication is not set with
RPC_C_AUTHN_LEVEL_PKT_PRIVACY. For more information

about setting the authentication and authorization, see
RpcBindingSetAuthInfoEx. The client attempts the call again
with new binding handle that is encrypted.

ecClientVerDisallowed 0x000004DF 1. The server requires encryption, but the client is not

encrypted and the client does not support receiving error code
ecNotEncrypted being returned by the server. See section 3.1.9
for details about which client versions do not support receiving

%5bMS-OXCROPS%5d.pdf
http://www.opengroup.org/public/pubs/catalog/c706.htm
http://www.opengroup.org/public/pubs/catalog/c706.htm
http://msdn2.microsoft.com/en-us/library/aa375608.aspx

34 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

Name Value Meaning

error code ecNotEncrypted.

2. The client version has been blocked by the administrator.

ecLoginFailure 0x80040111 1. The user does not have any access to a private mailbox or
public folder messaging data.

2. There are no private mailboxes or public folders on the

server.

3. The server is exiting or is about to exit.

ecUnknownUser 0x000003EB The server does not recognize the szUserDN as a valid enabled
mailbox. For more details, see [MS-OXCSTOR].

ecLoginPerm 0x000003F2 The connection is requested for administrative access, but the
authentication context associated with the binding handle does

not have enough privilege.

ecVersionMismatch 0x80040110 The client and server versions are not compatible. The client
protocol version is older than that required by the server.

ecCachedModeRequired 0x000004E1 The server requires the client to be running in cache mode. See
section 3.1.9 for details about which client versions understand
this error code.

ecRpcHttpDisallowed 0x000004E0 The server requires the client to not be connected via

RPC/HTTP. See section 3.1.9 for details about which client
versions understand this error code.

ecProtocolDisabled 0x000007D8 The server disallows the user to access the server via this
protocol interface. This could be done if the user is only capable

of accessing their mailbox information through a different
means (for example, Webmail, POP, IMAP, and so on). See
section 3.1.9 for details about which client versions understand

this error code.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol

[MS-RPCE].

3.1.4.12 EcDoRpcExt2 (opnum 11)

The method EcDoRpcExt2 passes generic remote operation (ROP) commands to the server for
processing within a Session Context. Each call can contain multiple ROP commands. The server

returns the results of each ROP command to the client. This call requires an active Session Context

Handle (CXH) returned from method EcDoConnectEx.

long __stdcall EcDoRpcExt2(

 [in, out, ref] CXH * pcxh,

 [in, out] unsigned long *pulFlags,

 [in, size_is(cbIn)] unsigned char rgbIn[],

 [in] unsigned long cbIn,

 [out, length_is(*pcbOut), size_is(*pcbOut)] unsigned char rgbOut[],

 [in, out] BIG_RANGE_ULONG *pcbOut,

 [in, size_is(cbAuxIn)] unsigned char rgbAuxIn[],

 [in] unsigned long cbAuxIn,

 [out, length_is(*pcbAuxOut), size_is(*pcbAuxOut)] unsigned char rgbAuxOut[],

 [in, out] SMALL_RANGE_ULONG *pcbAuxOut,

%5bMS-OXCSTOR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=112246

35 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

 [out] unsigned long *pulTransTime

);

pcxh: On input, the client MUST pass a valid Session Context Handle (CXH)that was created by
calling EcDoConnectEx. The server uses the CXH to identify the Session Context to use for this

call. On output, the server MUST return the same CXH on success.

The server can destroy the CXH by returning a zero CXH. The server might destroy the Session CXH

for the following reasons:

1. It determines that the ROP request payload in the rgbIn buffer is malformed or length

parameters are invalid.

2. The CXH passed in is invalid.

3. It is trying to access a Mailbox that is in the process of being moved.

4. If an administrator blocks a client that has an active connection.

pulFlags: On input, this parameter contains flags that tell the server how to build the rgbOut

parameter.

Name Value Meaning

NoCompression 0x00000001 The server MUST NOT compress ROP response payload (rgbOut) or
auxiliary payload (rgbAuxOut). If flag is absent, server MUST compress.

NoXorMagic 0x00000002 The server MUST NOT obfuscate the ROP response payload (rgbOut) or

auxiliary payload (rgbAuxOut). If flag is absent, server SHOULD
obfuscate.

Chain 0x00000004 The server allows chaining of ROP response payloads.

<5>

See section 3.1.7.1.2 for details about how to use these flags.

On output, the server MUST return 0x00000000. The meaning of the output flags are reserved for
future use.

rgbIn: This buffer contains the ROPrequest payload. The ROPrequest payload is prefixed with an
RPC_HEADER_EXT header. Information stored in this header determines how to interpret the

data following the header. See 3.1.7 for details about how to access the embedded ROP request
payload. The length of the ROPrequest payload including the RPC_HEADER_EXT header is

contained in parameter cbIn.

For more information about ROP buffers, see [MS-OXCROPS].

cbIn: On input, this parameter contains the length of the ROP request payload passed in the rgbIn

parameter. The server MUST fail with error code ecRpcFormat if the request buffer is larger than
0x00008007 bytes in size or is smaller than the size of the RPC_HEADER_EXT (0x00000008

bytes).<6>The ROP request payload includes the size of the ROPs plus the size of

RPC_HEADER_EXT. For more details, see [MS-OXCROPS].

rgbOut: On success, this buffer contains the ROP response payload. Like the ROP request payload,

the ROP response payload is also prefixed by a RPC_HEADER_EXT header. For details about how

%5bMS-OXCROPS%5d.pdf
%5bMS-OXABREF%5d.pdf
%5bMS-OXCMAIL%5d.pdf
%5bMS-OXCROPS%5d.pdf

36 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

to format the ROP response payload, see section 3.1.7. The size of the ROP response payload plus

the RPC_HEADER_EXT header is returned in pcbOut.

For more information about ROP buffers, see [MS-OXCROPS].

pcbOut: On input, this parameter contains the maximum size of the rgbOut buffer. The server
MUST fail with error code ecRpcFormat if the value in pcbOut on input is less than

0x00008007.<7>The server MUST fail with the RPC status code of RPC_X_BAD_STUB_DATA

(0x000006F7) if the value in pcbOut on input is larger than 0x00040000. For more information, see
[C706].

On output, this parameter contains the size of the ROP response payload, including the size of the
RPC_HEADER_EXT header in the rgbOut parameter. The server returns 0x00000000 on failure as

there is no ROP response payload. The client ignores any data returned on failure.

rgbAuxIn: This parameter contains an auxiliary payload buffer. The auxiliary payload buffer is

prefixed by an RPC_HEADER_EXT structure. Information stored in this header determines how to

interpret the data following the header. The length of the auxiliary payload buffer including the
RPC_HEADER_EXT header is contained in parameter cbAuxIn.

See section 3.1.7 for details about how to access the embedded auxiliary payload buffer. See
section 3.1.8 for details about how to interpret the auxiliary payload data.

cbAuxIn: On input, this parameter contains the length of the auxiliary payload buffer passed in the

rgbAuxIn parameter. The server MUST fail with the RPC status code RPC_X_BAD_STUB_DATA
(0x000006F7) if the request buffer is larger than 0x00001008 bytes in size. For more information,

see [C706].<8>

rgbAuxOut: On output, the server can return auxiliary payload data to the client. The server MUST

include a RPC_HEADER_EXT header before the auxiliary payload data.

See section 3.1.7 for details about how to access the embedded auxiliary payload buffer. See

section 3.1.8 for details about how to interpret the auxiliary payload data.

pcbAuxOut: On input, this parameter contains the maximum length of the rgbAuxOut buffer. The
server MUST fail with the RPC status code RPC_X_BAD_STUB_DATA (0x000006F7) if this value on

input is larger than 0x00001008. For more information, see [C706].

On output, this parameter contains the size of the data to be returned in the rgbAuxOut buffer.

pulTransTime: On output, the server stores the number of milliseconds the call took to execute.

This is the total elapsed time from when the call is dispatched on the server to the point in which the
server returns the call. This is diagnostic information the client can use to determine the cause of a

slow response time from the server. The client can monitor the total elapsed time across the RPC
function call and, using this output parameter, can determine whether time was spent transmitting

the request/response on the network on processing time on the server.

Error Values: If the method succeeds, the return value is 0. If the method fails, the error codes

listed in the following table are returned. Additional implementation-specific error codes could be

returned.

Name Value Meaning

ecRpcFormat 0x000004B6 The format of the request was found to be invalid. This is a generic error
that means the length was found to be invalid or the content was found to
be invalid.

http://www.opengroup.org/public/pubs/catalog/c706.htm
http://www.opengroup.org/public/pubs/catalog/c706.htm
http://www.opengroup.org/public/pubs/catalog/c706.htm

37 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol

[MS-RPCE].

3.1.4.13 Opnum12Reserved (opnum 12)

The Opnum12Reserved method is reserved. It is recommended that the method not be used.

3.1.4.14 Opnum13Reserved (opnum 13)

The Opnum13Reserved method is reserved. It is recommended that the method not be used.

3.1.4.15 EcDoAsyncConnectEx (opnum 14)

The method EcDoAsyncConnectEx binds a Session Context Handle (CXH) returned from method

EcDoConnectEx to a new Asynchronous Context Handle (ACXH) that can be used in calls to
EcDoAsyncWaitEx in interface AsyncEMSMDB. This call requires an active CXH to be returned

from method EcDoConnectEx.

This method is part of Notification handling. For more information about notifications, see [MS-

OXCNOTIF].

long __stdcall EcDoAsyncConnectEx(

 [in] CXH cxh,

 [out, ref] ACXH * pacxh

);

CXH : Client MUST pass a valid CXH that was created by calling EcDoConnectEx. The server uses
the CXH to identify the Session Context to use for this call.

pacxh: On success, the server returns an ACXH that is associated with the Session Context passed

in parameter CXH. This ACXH can be used to make a call to EcDoAsyncWaitEx on interface
AsyncEMSMDB.

Error Values: If the method succeeds, the return value is 0. If the method fails, the error codes
listed in the following table are returned. Additional implementation-specific error codes could be

returned.

Name Value Meaning

ecRejected 0x000007EE Server has asynchronous RPC notifications disabled. Client either polls for
notifications or calls EcRRegisterPushNotifications.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol

[MS-RPCE].

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

http://go.microsoft.com/fwlink/?LinkId=112246
%5bMS-OXCNOTIF%5d.pdf
%5bMS-OXCNOTIF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=112246

38 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

3.1.7 Extended Buffer Handling

Interface methods EcDoConnectEx and EcDoRpcExt2 contain request and response buffers that

use an extended buffer mechanism where the payload is preceded by a header. The header contains
flags that determine whether or not the payload has been compressed, obfuscated, or another

extended buffer and payload exists after the current payload. A single payload MUST NOT exceed 32

KB in size.

An extended buffer is used in fields rgbAuxIn and rgbAuxOut on the EcDoConnectEx method and in

the fields rgbIn, rgbOut, rgbAuxIn, and rgbAuxOut on the EcDoRpcExt2 method.

The following sections detail the extended buffer format, compression algorithm, obfuscation

algorithm, and extended buffer packing.

3.1.7.1 Extended Buffer Format

See section 2.2.2.1 for details about the structure and individual fields.

The client or server can choose not to compress the payload if the payload is small. The client or

server can choose to not obfuscate the payload if the payload has already been compressed. The
client or server can choose to not obfuscate the payload if the client is connected using RPC layer

encryption.

The extended buffer is used in both the EcDoConnectEx and EcDoRpcExt2 for a variety of
different fields. The information in the following sections describes how the extended buffer is used

for the different fields on each method.

3.1.7.1.1 EcDoConnectEx

3.1.7.1.1.1 rgbAuxIn

The input buffer rgbAuxIn has the following format:

RPC_HEADER_EXT Payload

The header MUST contain the Last flag in the flags field.

If the Compressed flag is present in the flags field, the content of the payload MUST be compressed

by the client and MUST be uncompressed by the server before it can be interpreted. See section

3.1.7.2 for details about how to compress and uncompress payload data.

If the XorMagic flag is present in the flags field, the content of the payload MUST be obfuscated by

the client and MUST be reverted by the server before it can be interpreted. See section 3.1.7.3 for
details about how to obfuscate and revert obfuscated payload data.

The payload is auxiliary information that can be passed from the client to the server. See section

3.1.8 for details about how to interpret this data.

3.1.7.1.1.2 rgbAuxOut

The output buffer rgbAuxOut has the following format:

RPC_HEADER_EXT Payload

The header MUST contain the Last flag in the flags field.

39 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

If the Compressed flag is present in the flags field, the content of the payload MUST be compressed

by the server and MUST be uncompressed by the client before it can be interpreted. See section
3.1.7.2 details about how to compress and uncompress payload data.

If the XorMagic flag is present in the flags field, the content of the payload MUST be obfuscated by
the server and MUST be reverted by the client before it can be interpreted. See section 3.1.7.3 for

details about how to obfuscate and revert obfuscated payload data.

The payload is auxiliary information that can be passed from the server to the client. See section
3.1.8 for details about how to interpret this data.

3.1.7.1.2 EcDoRpcExt2

The flags passed to the server in field pulFlags by the client request that the server compress or
obfuscate the response data returned in field rgbOut and rgbAuxOut. If the client requests no

compression or no obfuscation through the flags NoCompression or NoXorMagic, the server MUST

honor the client request. If the client requests compression or obfuscation through the absence of
either flags NoCompression or NoXorMagic, the server honors the client request. The client MUST

NOT assume a response will compressed or obfuscated if requested and has the ability to handle
data which is not compressed or not obfuscated.

3.1.7.1.2.1 rgbIn

The input buffer rgbIn has the following format:

RPC_HEADER_EXT Payload

The header MUST contain the Last flag in the flags field.

If the Compressed flag is present in the flags field, the content of the payload MUST be compressed
by the client and MUST be uncompressed by the server before it can be interpreted. See section

3.1.7.2 for details about how to compress and uncompress payload data.

If the XorMagic flag is present in the flags field, the content of the payload MUST be obfuscated by
the client and MUST be reverted by the server before it can be interpreted. See section 3.1.7.3 for

details about how to obfuscate and revert obfuscated payload data.

The payload is remote operation (ROP) request information that can be passed from the client to the

server. See [MS-OXCROPS] for details about how to interpret this data.

3.1.7.1.2.2 rgbOut

The output buffer rgbOut has the following format:

RPC_HEADER_EXT Payload RPC_HEADER_EXT Payload ... RPC_HEADER_EXT Payload

There might be multiple extended buffers contained in the single output buffer. <9>They will each
have an RPC_HEADER_EXT header followed by a Payload.

All headers except for the last MUST NOT contain the Last flag in the flags field. The last header

MUST contain the Last flag in the flags field.

If the Compressed flag is present in the flags field, the content of the payload following the header

MUST be compressed by the server and MUST be uncompressed by the client before it can be
interpreted. See section 3.1.7.2 for details about how to compress and uncompress payload data.

%5bMS-OXCROPS%5d.pdf

40 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

If the XorMagic flag is present in the flags field, the content of the payload following the header

MUST be obfuscated by the server and MUST be reverted by the client before it can be interpreted.
See section 3.1.7.3 for details about how to obfuscate and revert obfuscated payload data.

Compression or obfuscation can be done differently for each header and payload section. The client
MUST be able to treat each header and payload independently and interpret the contents solely on

the flags specified in the header.

Each payload contains remote operation (ROP) response information that is returned from the
server to the client. See [MS-OXCROPS] for details about how to interpret this data.

3.1.7.1.2.3 rgbAuxIn

The input buffer rgbAuxIn has the following format:

RPC_HEADER_EXT Payload

The header MUST contain the Last flag in the flags field.

If the Compressed flag is present in the flags field, the content of the payload MUST be compressed
by the client and MUST be uncompressed by the server before it can be interpreted. See section

3.1.7.2 for details about how to compress and uncompress payload data.

If the XorMagic flag is present in the flags field, the content of the payload MUST be obfuscated by

the client and MUST be reverted by the server before it can be interpreted. See section 3.1.7.3 for
details about how to obfuscate and revert obfuscated payload data.

The payload is auxiliary information that can be passed from the client to the server. See section

3.1.8 for details about how to interpret this data.

3.1.7.1.2.4 rgbAuxOut

The output buffer rgbAuxOut has the following format:

RPC_HEADER_EXT Payload

The header MUST contain the Last flag in the flags field.

If the Compressed flag is present in the flags field, the content of the payload MUST be compressed

by the server and MUST be uncompressed by the client before it can be interpreted. See section
3.1.7.2 for details about how to compress and uncompress payload data.

If the XorMagic flag is present in the flags field, the content of the payload MUST be obfuscated by
the server and MUST be reverted by the client before it can be interpreted. See section 3.1.7.3 for

details about how to obfuscate and revert obfuscated payload data.

The payload is auxiliary information that can be passed from the server to the client. See section
3.1.8 for details about how to interpret this data.

3.1.7.2 Compression Algorithm

Based on flags that are passed in RPC_HEADER_EXT header of the extended buffer, the payload is

compressed or decompressed by the server and client by using the LZ77 compression algorithm and
the DIRECT2 encoding algorithm.

%5bMS-OXCROPS%5d.pdf

41 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

This section describes the compression algorithm LZ77 and the basic encoding algorithm DIRECT2

that are used by the Wire Format protocol.

3.1.7.2.1 LZ77 Compression Algorithm

The compression algorithm is used to analyze input data and determine how to reduce the size of

that input data by replacing redundant information with metadata. Sections of the data that are

identical to sections of the data that have been encoded are replaced by small metadata that
indicates how to expand those sections again. The encoding algorithm is used to take that

combination of data and metadata and serialize it into a stream of bytes that can later be decoded
and decompressed.

3.1.7.2.1.1 Compression Algorithm Terminology

The following terms are associated with the compression algorithm.

input stream : The sequence of bytes to be compressed.

byte: The basic data element in the input stream.

coding position: The position of the byte in the input stream that is currently being coded (the
beginning of the lookahead buffer).

lookahead buffer: The byte sequence from the coding position to the end of the input stream.

window: A buffer that indicates the number of bytes from the coding position backward. A
window of size W contains the last W processed bytes.

pointer: Information about the beginning of the match in the window (referred to as "B" in the
example later in this section) and also specifies its length (re ferred to as "L" in the example later in

this section).

match: The string that is used to find a match of the byte sequence between the lookahead buffer
and the window.

3.1.7.2.1.2 Using the Compression Algorithm

To use the LZ77 compression algorithm:

1. Set the coding position to the beginning of the input stream.

2. Find the longest match in the window for the lookahead buffer.

3. Output the P,C pair, where P is the pointer to the match in the window, and C is the first byte in
the lookahead buffer that does not match.

4. If the lookahead buffer is not empty, move the coding position (and the window) L+1 bytes
forward.

5. Return to step 2.

3.1.7.2.1.3 Compression Process

The compression algorithm searches the window for the longest match with the beginning of the
lookahead buffer and then outputs a pointer to that match. Because even a 1-byte match might

not be found, the output cannot contain only pointers. The compression algorithm solves this

42 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

problem by outputting after the pointer the first byte in the lookahead buffer after the match. If no

match is found, the algorithm outputs a null-pointer and the byte at the coding position.

3.1.7.2.1.4 Compression Process Example

The following table shows the input stream that is used for this compression example. The bytes in

the input, "AABCBBABC," occupy the first nine positions of the stream.

Input stream

Pos 1 2 3 4 5 6 7 8 9

Byte A A B C B B A B C

The following table shows the output from the compression process. The table includes the following
columns:

Step: Indicates the number of the encoding step. A step in the table finishes every time that the
encoding algorithm makes an output. With the compression algorithm, this process happens in each

pass through step 3.

Pos: Indicates the coding position. The first byte in the input stream has the coding position 1.

Match: Shows the longest match found in the window.

Byte: Shows the first byte in the lookahead buffer after the match.

Output: Presents the output in the format (B,L)C, where (B,L) is the pointer (P) to the match. This

gives the following instructions to the decoder: Go back B bytes in the window and copy L bytes to
the output. C is the explicit byte.

Note One or more pointers might be included before the explicit byte that is shown in the Byte

column.

Compression process output

Step Pos Match Byte Output

1. 1 -- A (0,0)A

2. 2 A B (1,1)B

3. 4 -- C (0,0)C

4. 5 B B (2,1)B

5. 7 A B C (5,2)C

The result of compression, conceptually, is the output column – that is, a series of bytes and
optional metadata that indicates whether that byte is preceded by some sequence of bytes that is

already in the output.

Because representing the metadata itself requires bytes in the output stream, it is inefficient to

represent a single byte that has previously been encoded by two bytes of metadata (offset and
length). The overhead of the metadata bytes equals or exceeds the cost of outputting the bytes

directly. Therefore, the Exchange Server Protocol only considers sequences of bytes to be a match if

the sequences have three or more bytes in common.

43 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

3.1.7.2.2 DIRECT2 Encoding Algorithm

The basic notion of the DIRECT2 encoding algorithm is that data appears unchanged in the

compressed representation (it is not recommended to try to further compress the data by, for
example, applying Huffman compression to that payload), and metadata is encoded in the same

output stream, and in line with, the data.

The key to decoding the compressed data is recognizing what bytes are metadata and what bytes
are data. The decoder MUST be able to identify the presence of metadata in the compressed and

encoded data stream. Bitmasks are inserted periodically in the byte stream to provide this
information to the decoder.

This section describes the bitmasks that enable the decoder to distinguish data from metadata. It
also describes the process of encoding the metadata.

3.1.7.2.2.1 Bitmask

To distinguish data from metadata in the compressed byte stream, the data stream begins with a 4-

byte bitmask that indicates to the decoder whether the next byte to be processed is data ("0" value
in the bit), or if the next byte (or series of bytes) is metadata ("1" value in the bit). If a "0" bit is

encountered, the next byte in the input stream is the next byte in the output stream. If a "1" bit is

encountered, the next byte or series of bytes is metadata that MUST be interpreted further.

For example, a bitmask of 0x01000000 indicates that the first seven bytes are actual data, followed

by encoded metadata that starts at the eighth byte. The metadata is followed by 24 additional bytes
of data.

When the bitmask has been consumed, the next four bytes in the input stream are another bitmask.

3.1.7.2.2.2 Encoding Metadata

In the output stream, actual data bytes are stored unchanged. Bitmasks are stored periodically to
indicate whether the next byte or bytes are data or metadata. If the next bit in the bitmask is "1,"

the next set of bytes in the input data stream is metadata. This metadata contains an offset back to
the start of the data to be copied to the output stream, and the length of the data to be copied.

To represent the metadata as efficiently as possible, the encoding of that metadata is not fixed in

length. The encoding algorithm supports the largest possible floating compression window to
increase the probability of finding a large match; the larger the window, the greater the number of

bytes that are needed for the offset. The encoding algorithm also supports the longest possible
match; the longer the match length, the greater the number of bytes that are needed to encode the

length.

3.1.7.2.2.3 Metadata Offset

This protocol assumes the metadata is two bytes in length, where the high-order 13 bits are a first
complement of the offset, and the low-order three bits are the length. The offset is only encoded

with those 13 bits; this value cannot be extended and defines the maximum size of the compression

floating window. For example, the metadata 0x0018 is converted into the offset b'000000000011',
and the length b'000'. In integers, the offset is '-4', computed by inverting the offset bits, treating

the result as a 2s complement, and converting to integer.

44 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

3.1.7.2.2.4 Match Length

Unlike the metadata offset, the match length is extensible. If the length is less than 10 bytes, it is

encoded in the three low-order bits of the 2-byte metadata. Although three bits seems to allow for a
maximum length of six (the value b'111' is reserved), because the minimum match is three bytes,

these three bits actually allow for the expression of lengths from three to nine. The match length

goes from L = b'000' + 3 bytes, to L = b'110' + 3 bytes. Because smaller lengths are much more
common than the larger lengths, the algorithm tries to optimize for smaller lengths. To encode a

length between three and nine, we use the three bits that are "in-line" in the 2-byte metadata.

If the length of the match is greater than nine bytes, an initial bit pattern of b'111' is put in the

three bits. This does not signify a length of 10 bytes, but instead a length that is greater than or
equal to 10, which is included in the low-order nibble of the following byte.

Every other time that the length is greater than nine, an additional byte follows the initial 2-byte

metadata. The first time that the additional byte is included, the low-order nibble is used as the
additive length. The next nibble is "reserved" for the next metadata instance when the length is

greater than nine. Therefore, the first time that the decoder encounters a length that is greater than
nine, it reads the next byte from the data stream and the low-order nibble is extracted and used to

compute length for this metadata instance. The high-order nibble is remembered and used the next

time that the decoder encounters a metadata length that is greater than nine. The third time that a
length that is greater than nine is encountered, another extra byte is added after the 2-byte

metadata, with the low-order nibble used for this length and the high-order nibble reserved for the
fourth length that is greater than nine, and so on.

If the nibble from this "shared" byte is all 1s (for example, b'1111'), another byte is added after the
shared byte to hold more length. In this manner, a length of 24 is encoded as follows:

b'111' (in the three bits in the original two bytes of metadata), plus

b'1110' (in the nibble of the 'shared' byte of extended length)

b'111' means 10 bytes plus b'1110', which is 14, which results in a total of 24.

If the length is more than 24, the next byte is also used in the length calculation. In this manner, a
length of 25 is encoded as follows:

b'111' (in the three bits in the original two bytes of metadata), plus

b'1111' (in the nibble of the 'shared' byte of extended length), plus

b'00000000' (in the next byte)

This scheme is good for lengths of up to 278 (a length of 10 in the three bits in the original two
bytes of metadata, plus a length of 15 in the nibble of the 'shared' byte of extended length, plus a

length of up to 254 in the extra byte).

A "full" (all b'1') bit pattern (b'111', b'1111', and b'11111111') means that there is more length in

the following two bytes.

The final two bytes of length differ from the length information that comes earlier in the metadata.
For lengths that are equal to 280 or greater, the length is calculated only from these last two bytes,

and is not added to the previous length bits. The value in the last two bytes, a 16-bit integer, is
three less than the metadata length. These last two bytes allow for a match length of up to 32,768

bytes + 3 bytes (the minimum match length).

The following table summarizes the length representation in metadata.

45 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

Note Length is computed from the bits that are included in the metadata plus the minimum match

length of three.

Length representation in metadata

Match

Length Length Bits in the Metadata

24 b'111' (three bits in the original two bytes of metadata)

+

b'1110' (in the high or lower-order nibble, as appropriate, of the shared byte)

25 b'111' (three bits in the original two bytes of metadata)

+

b'1111' (in the high or lower-order nibble, as appropriate, of the shared byte)

+

b'00000000' (in the next byte)

26 b'111' (three bits in the original two bytes of metadata)

+

b'1111' (in the high or lower-order nibble, as appropriate, of the shared byte)

+

b'00000001' (in the next byte)

279 b'111' (three bits in the original two bytes of metadata)

+

b'1111' (in the high or lower-order nibble, as appropriate, of the shared byte)

+

b'11111110' (in the next byte)

280 b'111' (three bits in the original two bytes of metadata)

b'1111' (in the high or lower-order nibble, as appropriate, of the shared byte)

b'11111111' (in the next byte)

0x0115 (in the next two bytes). These two bytes represent a length of 277 + 3 (minimum
match length).

Note All the length is included in the final two bytes and is not additive, as were the

previous length calculations for lengths that are smaller than 280 bytes.

281 b'111' (three bits in the original two bytes of metadata)

b'1111' (in the high or lower-order nibble, as appropriate, of the shared byte)

b'11111111' (in the next byte)

0x0116 (in the next two bytes). This is 278 + 3 (minimum match length).

Note All the length is included in the final two bytes and is not additive, as were the
previous length calculations for lengths that are smaller than 280 bytes.

A "full" bit pattern in that last half word does not mean that more metadata is coming a fter the last

bytes.

The LZ77 compression algorithm produces a well-compressed encoding for small valued lengths, but

as the length increases, the encoding becomes less well compressed. A match length of greater than
278 bytes requires a relatively large number of bits: 3+4+8+16. This includes three bits in the

46 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

original two bytes of metadata, four bits in the nibble in the 'shared' byte, eight bits in the next

byte, and 16 bits in the final two bytes of metadata.

3.1.7.3 Obfuscation Algorithm

Obfuscation is used to obscure any easily readable messaging data being transmitted between the

client and server across the network. This is not intended as a security feature. If a client wants to

have secure communications with the server, it MUST use RPC-level packet encryption.

The algorithm used to obscure data is straightforward and simple. Every byte of the data to be

obfuscated has XOR applied with the value 0xA5.

3.1.7.4 Extended Buffer Packing

As mentioned in section 3.1.7.1.2.2, the rgbOut field of method EcDoRpcExt2 can contain more

than one extended buffer, each with an RPC_HEADER_EXT header. This concept is called

"packing". The server has the ability to "pack" additional response data into the rgbOut field based
on whether the client has requested this functionality through passing flag Chain in the pulFlags field

and whether the remote operation (ROP) in the rgbIn request buffer on the EcDoRpcExt2 method
support "packing". The ROP commands that support "packing" are RopQueryRows, RopReadStream,

and RopFastTransferSourceGetBuffer. See [MS-OXCROPS] for details about these ROP commands.

<10>

When processing ROP requests, the server MUST NOT produce more than 32 KB worth of response

data for all ROP requests. However, when the server finishes processing a RopQueryRows,
RopReadStream, and RopFastTransferSourceGetBuffer from the rgbIn request buffer and it was the

last ROP command in the request buffer and the client has requested "packing" through the Chain

flag and there is residual room in the rgbOut response buffer, the server can add additional data to
the rgbOut response buffer with its own RPC_HEADER_EXT header.

For the server to produce additional response data, it MUST build a response "as if" the client sent
another request with only a RopQueryRows, RopReadStream, or RopFastTransferSourceGetBuffer.

The additional response data is also limited to 32 KB in size.The additional ROP response is placed
into the rgbOut buffer following the previous header and payload with its own RPC_HEADER_EXT

header. The server can then compress and/or obfuscate this payload if the client requests and set

the appropriate flags in the header indicating how the payload has been altered. If there is still more
residual room in the rgbOut buffer, the server can continue to produce more response data until

there is not enough room in the rgbOut buffer to hold another response.

The server MUST stop adding additional "packed" buffers to the rgbOut response buffer if the

residual size of the rgbOut response buffer is less than 8 KB for RopReadStream and

RopFastTransferSourceGetBuffer and 32 KBfor RopQueryRows. The server MUST NOT place more
than 96 individual payloads into a single rgbOut response buffer.

When it adds additional response data, the server MUST alter the request to reflect what has already
been done. For example, if the client requests to read 1,000 rows in RopQueryRows and the first

payload contains 100 rows, the additional response data MUST be processed "as if" the client only
request 900 rows. The server MUST NOT return more data to the client than the client originally

requested.

For RopQueryRows, the server MUST adjust the row count when adding additional response data.
For RopReadStream, the server MUST adjust the number of bytes to read when adding additional

response data. There is no specific limit for RopFastTransferSourceGetBuffer, but the server MUST
stop if no more data is indicated for the fast transfer stream. For RopFastTransferSourceGetBuffer,

the client requests that the server return "as much" data as possible. See [MS-OXCROPS] for details

about how to properly format RopFastTransferSourceGetBuffer in this way.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

47 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

3.1.8 Auxiliary Buffer

Methods EcDoConnectEx and EcDoRpcExt2 allow for additional data to travel between the client

and server. This additional data is transferred in the auxiliary buffers of both methods. The rgbAuxIn
is for auxiliary data being sent from the client to the server and rgbAuxOut is for auxiliary data

being sent from the server to the client.

Unlike the ROP request and response payloads rgbIn and rgbOut, there is no request and response
nature to the auxiliary buffers. The data sent to the server from the client in the auxiliary input

buffer is purely informational and the server is not required to respond in the auxiliary output buffer.
The data sent from the server to the client is also informational data that the client might use to

alter its behavior against the server.

The data being transferred in the auxiliary buffers is divided into two different categories. The first is

client-side performance information, which is statistical information the client can keep regarding its

communication with the messaging server or the directory service. Part of this information is for
when the client fails to communicate with the messaging server or the directory service. The client

can then report this information to the server the next time it communicates. The server is free to
analyze this information and provide feedback to help diagnose any potential networking or

communications issues with the client/server messaging network infrastructure.

The second category of auxiliary information is server-to-client oriented and enables the server to
tell the client about topology characteristics of the messaging system. The client can use this

information to change how it interacts with the server.

All information in the auxiliary buffer MUST be added with an AUX_HEADER preceding the actual

auxiliary information. See section 2.2.2.2 for details about the AUX_HEADER and how it is
formatted. Within the AUX_HEADER header the fields Version and Type combined determine

which auxiliary block follows the header. Section 2.2.2.2 provides details about how to format the

AUX_HEADER header to indicate which auxiliary block follows.

If the client or server receives an auxiliary AUX_HEADER block with a version and type it does not

identify, it MUST skip over the entire block. The AUX_HEADER contains the length of the
AUX_HEADER plus the following auxiliary block in the field Size, and so skipping the information

can be done. The client or server does not throw an error if there is an auxiliary block that it does

not identify. This will allow for future expansion to the auxiliary blocks without affecting legacy
clients or servers.

3.1.8.1 Client Performance Monitoring

The following are sent from the client to the server in the rgbAuxIn auxiliary buffer on method

EcDoConnectEx. Each of these auxiliary blocks MUST be preceded by a properly formatted
AUX_HEADER header.

Sent by client to server in EcDoConnectEx

Block Description

AUX_PERF_CLIENTINFO

(see section 2.2.2.6)

Sent to the server as diagnostic information about the client for more
robust reporting of networking issues. The client MUST assign a unique
ClientID parameter for each AUX_PERF_CLIENTINFO block sent to

the server. The ClientID is also used in other performance blocks to
identify which client to associate the performance data with.

AUX_PERF_PROCESSINFO

(see section 2.2.2.8)

Sent to the server as diagnostic information about the client process
for more robust reporting of networking issues. The client MUST assign

48 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

Block Description

a unique ProcessID for each AUX_PERF_PROCESSINFO block sent

to the server. The ProcessID is also used in other performance blocks
to identify which client process to associate the performance data
with.

AUX_PERF_SESSIONINFO

(see section 2.2.2.4)

Sent to the server as diagnostic information about the client session

for more robust reporting of networking issues. The client MUST assign
a unique SessionID for each AUX_PERF_SESSIONINFO/
AUX_PERF_SESSIONINFO_V2 block sent to the server. The

SessionID is also used in other performance blocks to identify which
client session to associate the performance data with.

If writing a client, it is recommended that

AUX_PERF_SESSIONINFO_V2 be used instead. A server still
supports this older session information auxiliary block.

This block can also be passed in the EcDoRpcExt2 auxiliary input

buffer.

AUX_PERF_SESSIONINFO_V2

(see section 2.2.2.5)

Sent to the server as diagnostic information about the client session
for more robust reporting of networking issues. The client MUST assign
a unique SessionID for each AUX_PERF_SESSIONINFO_V2/

AUX_PERF_SESSIONINFO block sent to the server. The SessionID
is also used in other performance blocks to identify which client
session to associate the performance data with.

This block can also be passed in the EcDoRpcExt2 auxiliary input
buffer.

The following are sent from the client to the server in the rgbAuxIn auxiliary buffer on method
EcDoRpcExt2. Each of these auxiliary blocks MUST be preceded by a properly formatted

AUX_HEADER header (see section 2.2.2.2).

Sent by client to server in EcDoRpcExt2

Block Description

AUX_PERF_SESSIONINFO

(see section 2.2.2.4)

Sent to the server as diagnostic information about the client session
for more robust reporting of networking issues. The client MUST
assign a unique SessionID for each AUX_PERF_SESSIONINFO/

AUX_PERF_SESSIONINFO_V2 block sent to the server. The
SessionID is also used in other performance blocks to identify which
client session to associate the performance data with.

If writing a client, it is recommended that
AUX_PERF_SESSIONINFO_V2 be used instead. A server still
supports this older session information auxiliary block.

This block can also be passed in the EcDoConnectEx auxiliary input
buffer.

AUX_PERF_SESSIONINFO_V2

(see section 2.2.2.5)

Sent to the server as diagnostic information about the client session
for more robust reporting of networking issues. The client MUST
assign a unique SessionID for each AUX_PERF_SESSIONINFO_V2/

AUX_PERF_SESSIONINFO block sent to the server. The SessionID
is also used in other performance blocks to identify which client
session to associate the performance data with.

This block can also be passed in the EcDoConnectEx auxiliary input
buffer.

49 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

Block Description

AUX_PERF_SERVERINFO

(see section 2.2.2.7)

Sent to the server as diagnostic information about the server that the

client is communicating with for more robust reporting of networking
issues. The client MUST assign a unique ServerID for each
AUX_PERF_SERVERINFO block sent to the server. The ServerID is

also used in other performance blocks to identify which server a client
is communicating with to associate the performance data.

AUX_PERF_REQUESTID

(see section 2.2.2.3)

Sent to the server as diagnostic information about a particular
request for more robust reporting of networking issues. The client

MUST assign a unique RequestID for each
AUX_PERF_REQUESTINFO block sent to the server. The RequestID
is also used in other performance blocks to identify which request to

associate the performance data with.

This block requires an AUX_PERF_SESSIONINFO or
AUX_PERF_SESSIONINFO_V2 to have been previously sent to the

server for the SessionID field within this block.

AUX_PERF_DEFMDB_SUCCESS

(see section 2.2.2.9)

Sent to the server as diagnostic information to report a previously
successful RPC call to the messaging server.

This block requires an AUX_PERF_REQUESTID to have been

previously sent to the server for the RequestID field within this
block.

AUX_PERF_DEFGC_SUCCESS

(see section 2.2.2.10)

Sent to the server as diagnostic information to report a previously
successful call to the Active Directory directory service.

This block requires an AUX_PERF_SERVERINFO and

AUX_PERF_SESSIONINFO/ AUX_PERF_SESSIONINFO_V2 to
have been previously sent to the server for the ServerID and
SessionID fields within this block.

AUX_PERF_MDB_SUCCESS

(see section 2.2.2.11)

Sent to the server as diagnostic information to report a previously

successful RPC call to the messaging server.

This block requires an AUX_PERF_REQUESTID,
AUX_PERF_CLIENTINFO, AUX_PERF_SERVERINFO, and

AUX_PERF_SESSIONINFO/ AUX_PERF_SESSIONINFO_V2 to
have been previously sent to the server for the RequestID,
ClientID, ServerID, and SessionID fields within this block.

If writing a client, it is recommended that
AUX_PERF_MDB_SUCCESS_V2 be used instead. A server still
supports this older session information auxiliary block.

AUX_PERF_MDB_SUCCESS_V2

(see section 2.2.2.12)

Sent to the server as diagnostic information to report a previously
successful RPC call to the messaging server.

This block requires an AUX_PERF_REQUESTID,
AUX_PERF_PROCESSINFO, AUX_PERF_CLIENTINFO,
AUX_PERF_SERVERINFO, and AUX_PERF_SESSIONINFO/

AUX_PERF_SESSIONINFO_V2 to have been previously sent to the
server for the RequestID, ProcessID, ClientID, ServerID, and
SessionID fields within this block.

AUX_PERF_GC_SUCCESS

(see section 2.2.2.13)

Sent to the server as diagnostic information to report a previously

successful call to the directory service.

This block requires an AUX_PERF_CLIENTINFO,
AUX_PERF_SERVERINFO, and AUX_PERF_SESSIONINFO/

AUX_PERF_SESSIONINFO_V2 to have been previously sent to the

%5bMS-OXGLOS%5d.pdf

50 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

Block Description

server for the ClientID, ServerID, and SessionID fields within this

block.

If writing a client, it is recommended that
AUX_PERF_GC_SUCCESS_V2 be used instead. A server still

supports this older session information auxiliary block.

AUX_PERF_GC_SUCCESS_V2

(see section 2.2.2.14)

Sent to the server as diagnostic information to report a previously
successful call to the directory service.

This block requires an AUX_PERF_PROCESSINFO,

AUX_PERF_CLIENTINFO, AUX_PERF_SERVERINFO, and
AUX_PERF_SESSIONINFO/ AUX_PERF_SESSIONINFO_V2 to
have been previously sent to the server for the ProcessID,

ClientID, ServerID, and SessionID fields within this block.

AUX_PERF_FAILURE

(see section 2.2.2.15)

Sent to the server as diagnostic information to report a previously
FAILED call to the messaging server or the directory service.

This block requires an AUX_PERF_REQUESTID,

AUX_PERF_CLIENTINFO, AUX_PERF_SERVERINFO, and
AUX_PERF_SESSIONINFO/ AUX_PERF_SESSIONINFO_V2 to
have been previously sent to the server for the RequestID,

ClientID, ServerID, and SessionID fields within this block.

If writing a client, it is recommended that AUX_PERF_FAILURE_V2
be used instead. A server still supports this older session information

auxiliary block.

AUX_PERF_FAILURE_V2

(see section 2.2.2.16)

Sent to the server as diagnostic information to report a previously

FAILED call to the messaging server or the directory service.

This block requires an AUX_PERF_REQUESTID,
AUX_PERF_PROCESSINFO, AUX_PERF_CLIENTINFO,

AUX_PERF_SERVERINFO, and AUX_PERF_SESSIONINFO/
AUX_PERF_SESSIONINFO_V2 to have been previously sent to the
server for the RequestID, ProcessID, ClientID, ServerID, and

SessionID fields within this block.

3.1.8.2 Server Topology Information

The following are sent from the server to the client in the rgbAuxOut auxiliary buffer on method
EcDoConnectEx. Each of these auxiliary blocks MUST be preceded by a properly formatted

AUX_HEADER header (see section 2.2.2.2).

Sent by server to client in EcDoConnectEx

Block Description

AUX_CLIENT_CONTROL

(see section 2.2.2.17)

Sent to the client to request a change in client behavior. This is a means for
the server to dynamically change client behavior. See section 2.2.2.17 for
details about what client behavior the server can adjust.

The client alters its behavior based on this request.

AUX_OSVERSIONINFO

(see section 2.2.2.18)

Sent to the client as informational data to help the client decide whether it
needs to alter its behavior against the server. The data provided to the client
is the servers operating system version and operating system service pack

information. <11>

51 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

Block Description

AUX_EXORGINFO

(see section 2.2.2.19)

Sent to the client as informational data to help the client decide whether it

needs to alter its behavior against the server. The data provided informs the
client of the presence of public folders within the organization.

A client MUST NOT try to open a public store if the server informs the client

that it is not present or disabled. If this block is not returned to the client, the
client assumes that public folders are available within the organization.

The following are sent from the server to the client in the rgbAuxOut auxiliary buffer on method

EcDoRpcExt2. Each of these auxiliary blocks MUST be preceded by a properly formatted
AUX_HEADER header (see section 2.2.2.2).

Sent by server to client in EcDoRpcExt2

Block Description

AUX_CLIENT_CONTROL

(see section 2.2.2.17)

Sent to the client to request a change in client behavior. This is a means for
the server to dynamically change client behavior. See section 2.2.2.17 for

details about what client behavior the server can adjust.

The client alters its behavior based on this request. <12>

3.1.9 Version Checking

In the method EcDoConnectEx, the client passes the client version to the server. In response, the

server returns its version to the client. The server version information indicates to the client what
functionality is supported on the server. The client version information indicates to the server what

functionality the client supports.

Sometimes the functionality represents a change in the protocol wire format. This section describes

the following:

How version numbers are compared.

Specific server versions and their associated functionality.

Specific client versions and their associated functionality.

3.1.9.1 Version Number Comparison

On the wire, client and server versions numbers are passed as three WORD values. See section
3.1.4.11 for details about the EcDoConnectEx method. In this method, the fields

rgwClientVersion, rgwServerVersion, and rgwBestVersion are all passed as three WORD
values. However, manipulation MUST be performed before the numbers can be compared.

Because versions that are passed on the wire were historically represented as only three numbers,
the version number was expressed as "XX.XXXX.XXX." The first number represented the product

major version. The second number was the build major number. The third number was the build

minor number. However, this representation prevented the inclusion of a required fourth number,
the product minor number, which is used when shipping service packs.

Microsoft changed the versioning to be represented as "XX.XX.XXXX.XXX." For example,
"08.01.0215.000" represents a specific build of Exchange 2007 with Service Pack 1 applied. The first

number is the product major version. The second number is the product minor version. The third

number is the build major number. The fourth number is the build minor number.

%5bMS-OXGLOS%5d.pdf

52 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

However, the version size on the wire did not change: it is still represented as three WORD values.

A scheme was devised that converts from the three WORD on-the-wire-format of the version into a
four-number version. This is referred to as version number normalization.

All versions are converted into four-number versions before any version checks are performed. The
following pseudo-code example describes a function that converts the three WORD value wire

version format into a four-number format that can then be used for version comparisons.

// This routine converts a three WORD version value into a normalized

// four WORD version value.

//

// Version[] is an array of 3 WORD values on the wire.

// NormalizedVersion[] is an array of 4 WORD values for comparison.

//

IF high-bit of Version[1]is set THEN

 SET NormalizedVersion[0] to high-byte of Version[0]

 SET NormalizedVersion[1] to low-byte of Version[0]

 SET NormalizedVersion[2] to Version[1] with high-bit cleared

 SET NormalizedVersion[3] to Version[2]

ELSE

 SET NormalizedVersion[0] to Version[0]

 SET NormalizedVersion[1] to 0

 SET NormalizedVersion[2] to Version[1]

 SET NormalizedVersion[3] to Version[2]

ENDIF

The first WORD is divided into two BYTE values, one being the product major version and the other

being the product minor version. On the wire, the client and server need to know whether the
version that is being passed is in the old scheme or the new scheme. If the highest bit of the second

WORD value on the wire is set, the version on the wire is in the new scheme. Otherwise, it is
interpreted as the old scheme where the product minor version is not sent.

3.1.9.2 Server Versions

The following table shows server version values that are returned to the client on the

EcDoConnectEx method call. The client can assume that the described functionality exists if the
version number that is passed in the RPC buffer is equal to or greater than the server version

number in which the functionality was added, as shown in the table.

Server
version Description

6.0.6755.0 The server supports passing the sentinel value 0xBABE in the BufferSize field of a

RopFastTransferSourceGetBuffer request. For details, see [MS-OXCROPS].

8.0.295.0 The server supports passing the sentinel value 0xBABE in the ByteCount field of a
RopReadStream request. For details, see [MS-OXCROPS].

8.0.324.0 The server supports the flag CLI_WITH_PER_MDB_FIX in the OpenFlags field of a
RopLogon request. For details, see [MS-OXCROPS] and [MS-OXCSTOR].

8.0.358.0 The server supports the EcDoAsyncConnectEx and EcDoAsyncWaitEx RPC function
calls.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCSTOR%5d.pdf

53 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

A server implementation needs to determine which level of support it will offer clients. Based on this

level of support, it MUST return a server version that corresponds to that support. A server cannot
mix and match functionality. To support functionality at one server version level, the server MUST

support all functionality from previous server version levels.

3.1.9.3 Client Versions

The following table shows client versions that are passed to the server on the EcDoConnectEx
method call, where the client can expect the server behavior to change if the version that is

transferred on the wire is equal to or greater than client version numbers as listed in the table.

Client version Description

11.0.0.0 The client supports receiving Unicode strings for all string properties on Recipient row
data that is returned from the server on RopReadRecipients, RopOpenMessage, and
RopOpenEmbeddedMessage. For details, see [MS-OXCROPS].

11.00.0000.4920 The client supports receiving ecServerBusy in the ReturnValue field of the

RopFastTransferSourceGetBuffer response. The client also assumes that the
BackoffTime field will be present when the ReturnValue is ecServerBusy. If
ReturnValue is not ecServerBusy, the BackoffTime field is not present. For details,

see [MS-OXCROPS] and [MS-OXCFXICS].

12.00.0000.000 The client supports receiving the errors ecCachedModeRequired, ecRpcHttpDisallowed,

and ecProtocolDisabled on the EcDoConnectEx call; otherwise, the client will get
back ecClientVerDisallowed instead.

12.00.3118.000 The client supports receiving an AUX_EXORGINFO block in the rgbAuxOut buffer on
the EcDoConnectEx call.

12.00.3619.000 The client supports receiving the errors ecNotEncrypted on the EcDoConnectEx call;

otherwise, the client will get back ecClientVerDisallowed. This error is returned when
the server is configured to only allow encrypted connections and the client is trying to
connect on a nonencrypted connection.

12.00.3730.000 The client supports send optimization for Incremental Change Synchronization
(ICS) using PidTagTargetEntryId. See [MS-OXCFXICS] for more details.

12.00.4207.000 The client supports "packing" of RopReadStream in the ROP response buffer of the

EcDoRpcExt2 RPC call. The RopReadStream MUST be the last ROP in the request
buffer on the EcDoRpcExt2 call. See section 3.1.7.4 for details about extended buffer
"packing".

12.00.4228.0000 The client supports receiving RopBackoff in the ROP response buffer of the
EcDoRpcExt2 call. For details, see [MS-OXCROPS].

A client implementation needs to determine which level of support it will offer servers. Based on this

level of support, it MUST pass a client version that corresponds to that support. A client cannot mix

and match functionality. To support functionality at one client version level, it MUST support all
functionality from previous client version levels.

3.2 EMSMDB Client Details

3.2.1 Abstract Data Model

For some functionality on the EMSMDB interface, it is required that the client store a Session

Context Handle (CXH) and use it on subsequent interface calls that require a CXH context handle.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCFXICS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

54 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

3.2.2 Timers

No protocol timers are required beyond the internal timers that are used in RPC to implement

resiliency to network outages. For details, see [MS-RPCE].

3.2.3 Initialization

The client creates an RPC connection to the remote server using the details described in section 2.1.

Establishing a connection with the server requires authentication. The RPC binding handle MUST

have an authentication method defined.

3.2.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency
check at target level 5.0, as specified in section 3 of [MS-RPCE].

Upon the completion of the RPC method, the client returns the result unmodified to the higher layer.
Some method calls require an RPC context handle, which is created in another method call. For

details about method dependencies, see section 3.

3.2.4.1 Sending EcDoConnectEx

When issuing the interface call EcDoConnectEx, some parameters need additional client-side
consideration beyond what is stated in section 3.1.4.11. The following is a list of parameters for

which the client has specific handling:

hBinding: A valid RPC binding handle that MUST have a server name, protocol sequence, and

authentication method defined. Some protocol sequences have named endpoints that MUST be

used. See section 2.1 for details about how to create a binding handle.

pcxh: On success, this field will contain the Session Context Handle (CXH). The CXH MUST be

stored on the client and used in subsequent calls on the EMSMDB interface that require a valid
CXH.

ulConMod: The connection modulus hash is determined by the client for a connection. How the
client determines the hash value is not important. The client ensures that for a particular

distinguished name passed in field szUserDN, the hash value is always be the same. It is

acceptable to have the same hash value for different distinguished names. The client is free to send
any 32-bit value.

cbLimit: A client MUST pass a value of 0x00000000.

ulIcxrLink: This value is used to link the Session Context that is created by this call with an

existing Session Context on the server that was created by a previous call to EcDoConnectEx.

A client can link two Session Contexts for the following reasons:

1. To consume a single Client Access License (CAL) for all the connections made from a single client

computer. This gives a client the ability to open multiple independent connections using more
than one Session Context on the server, but be seen to the server as only consuming a single

CAL.

2. To get pending notification information for other sessions on the same client computer. See
RopPending in [MS-OXCNOTIF] for details.

http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCNOTIF%5d.pdf

55 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

If a client does not want to link two Session Contexts or if this is the first call to EcDoConnectEx,

the client MUST pass a value of 0xFFFFFFFF.

Note that the ulIcxrLink parameter is defined as a 32-bit value. Other than passing 0xFFFFFFFF for

no Session Context link, the client passes a value with the high-order 16-bits set to zero and the
low-order 16-bits MUST be the value returned in field piCxr from a previous EcDoConnectEx call.

usFCanConvertCodePages: The client MUST pass a value of value 0x01.

pcmsPollsMax: On success, this value is the number of milliseconds the client waits before polling
the server for notification information. Other more dynamic options are available to the client for

receiving notifications from the server. See [MS-OXCNOTIF] for details about working with
Notifications. The client saves this value and associate it with the CXH.

pcRetry: On success, this value is the number of times the client retries a subsequent EMSMDB
method call that uses the CXH that is returned in field pcxh. See section 3.2.4.3 for details about

retrying RPC calls. The client saves this value and associates it with the CXH.

pcmsRetryDelay: On success, this value is the number of milliseconds a client waits before
retrying a subsequent EMSMDB method call that uses the CXH that is returned in field pcxh. See

section 3.2.4.3 for details about retrying RPC calls. The client saves this value and associates it with
the CXH.

piCxr: On success, this value is a 16-bit session index that can be used in conjunction with the

value returned in pulTimeStamp to link two Session Contexts on the server. See field ulIcxrLink for
details about how to link Session Contexts and the reason why a client might want to do so.

The client saves this value and associates it with the CXH. It is the session index returned in a
RopPending response command on calls to EcDoRpcExt2. The RopPending response command tells

the client that a Session Context on the server has pending notifications. If a client links Session
Contexts, a RopPending can be returned for any linked Session Context. See [MS-OXCROPS] and

[MS-OXCNOTIF] for details about RopPending.

rgwClientVersion: The client MUST pass the version number of the highest client protocol version
it supports. This value will provide information to the server about the protocol functionality that the

client supports. For details about how version numbers are interpreted from the wire data and the
expected client behavior, see section 3.1.9.

rgwServerVersion: On success, this value is the server protocol version that the client uses to

determine what protocol functionality the server supports. For details about how version numbe rs
are interpreted from the wire data and the expected server behavior, see section 3.1.9. The client

saves this value and associates it with the CXH.

pulTimeStamp: If a client wants to link the Session Context that is created by this call to a

previously created Session Context, the client MUST pass on input the session creation time stamp
returned in pulTimeStamp on a previous EcDoConnectEx call. If the client does not want to link

Session Contexts, the client passes value 0x00000000.

On success, this value is the Session Context creation time stamp. The server saves the Session
Context creation time stamp and associate it with the CXH.

3.2.4.2 Sending EcDoRpcExt2

When issuing the interface call EcDoRpcExt2 some parameters need additional client-side

consideration beyond what is stated in section 3.1.4.12. The following is a parameter for which the
client has specific handling:

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

56 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

pcxh: The client MUST pass a valid Session Context Handle (CXH) that was created by calling

EcDoConnectEx. On output, the server might have prematurely closed the client's session by
clearing the CXH to zero. If the value on output is zero, the Session Context on the server has been

destroyed.

3.2.4.3 Handling Server Too Busy

All method calls that require a valid Session Context Handle (CXH) are to be retried if the call fails
with RPC status RPC_S_SERVER_TOO_BUSY. The number of times the client retries and the amount

of time the client waits before retrying is based on fields pcRetry and pcmsRetryDelay returned on
EcDoConnectEx. EcDoConnectEx is the only method that creates a CXH, so it is a prerequisite for

any method that requires a CXH.

3.2.4.4 Handling Connection Failures

If the client's connection to the server fails or if the server prematurely disconnects a client by
clearing the Session Context Handle (CXH) in the response to an EMSMDB method call, the client

cleans up any saved session state information and close the CXH if it is not already set to zero. The
binding handle of the session is to be closed.

A client might chose to reconnect to the server automatically by creating a new binding handle and

calling EcDoConnectEx. This will create a new Session Context on the server. Note that all Server
objects previously opened on the server will no longer exist and the client MUST issue ROP

commands if the client wants to recreate or reopen the Server objects.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

3.3 AsyncEMSMDB Server Details

The server responds to messages it receives from the client.

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

The abstract data model for this interface is the same as that for the EMSMDB interface. See
section 3.1.1 for details about Session Context and Session Context Handles (CXHs).

Some methods on this interface require Session Context information to be stored on the server and

used across multiple interface calls for a long duration of time. For these method calls, this protocol
is stateful. The server MUST store this Session Context information and provide a CXH to the client

to make subsequent interface calls using this same Session Context information.

57 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

The AsyncEMSMDB uses Asynchronous Context Handles (ACXH), which are RPC context handles.

Every ACXHMUST map to the Session Context that is associated with a CXH. There is only one ACXH
for a Session Context.

All methods on the AsyncEMSMDB interface that use an ACXH MUST be performed against the
Session Context that is associated with the ACXH.

The server MUST keep a mapping between the ACXHand an active Session Context on the server.

Session Context can be created and destroyed through the EMSMDB interface.

When the Session Context is destroyed or the client connection is lost, the ACXH MUST also be

destroyed.

3.3.2 Timers

None.

3.3.3 Initialization

The server first MUST register the different protocol sequences that will allow clients to

communicate with the server. This is done by calling RPC function RpcServerUseProtseqEp. See
[MS-RPCE] for details about this function and protocol sequences. The supported protocol sequences

are specified in section 2.1. Note that some protocol sequences use named endpoints, which are

also specified in section 2.1.

The server MUST register the different authentication methods that are allowed on the

AsyncEMSMDB interface. This is done by calling RPC function RpcServerRegisterAuthInfo. See
[MS-RPCE] for details about this function and authentication methods.

The server MUST start listening for RPC calls by calling RPC function RpcServerListen. See [MS-

RPCE] for details about this function.

The server MUST register the AsyncEMSMDB interface. This is done by calling RPC function

RpcServerRegisterIfEx. See [MS-RPCE] for details about this function.

The last step is to register the AsyncEMSMDB interface to all the registered binding handles

created previously in calls to RpcServerUseProtseq or RpcServerUseProtseqEp. This is done by
first acquiring all the binding handle information through RPC function RpcServerInqBindings, and

then calling RPC function RpcEpRegister with the binding information. See [MS-RPCE] for details

about these functions.

3.3.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency

check at target level 5.0, as specified in [MS-RPCE] Section 3.

This interface includes the following method:

Method opnum Description

EcDoAsyncWaitEx 0 Asynchronous call that the server will not complete until there are
pending events on the Session Context. The method requires an active
Asynchronous Context Handle (ACXH) returned from

EcDoAsyncConnectEx on interface EMSMDB.

http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246

58 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

3.3.4.1 EcDoAsyncWaitEx (opnum 0)

The method EcDoAsyncWaitEx is an asynchronous call that the server will not complete until there

are pending events on the Session Context up to a five minute duration. If no events are available
within five minutes, the server will return the call and will not set the NotificationPending flag in the

pulFlagsOut field. If an event is pending, the server will complete the call immediately and return

the NotificationPending flag in the pulFlagsOut field. This call requires an active Asynchronous
Context Handle (ACXH) returned from EcDoAsyncConnectEx on interface EMSMDB. The ACXH is

associated with the Session Context.

This method is part of Notification handling. See [MS-OXCNOTIF] for details about notifications.

long __stdcall EcDoAsyncWaitEx(

 [in] ACXH acxh,

 [in] unsigned long ulFlagsIn,

 [out] unsigned long *pulFlagsOut

);

acxh: On input, the client MUST pass a valid ACXH that was created by calling
EcDoAsyncConnectEx on interface EMSMDB. The server uses the ACXH to identify the Session

Context to use for this call.

ulFlagsIn: Unused. Reserved for future use. Client MUST pass a value of 0x00000000.

pulFlagsOut: Output flags for the client.

Flag Value Description

NotificationPending 0x00000001 Signals that events are pending for the client on the Session Context
on the server. The client calls EcDoRpcExt2 with an empty remote

operation (ROP) request buffer. The server will return the event
details in the ROP response buffer.

3.3.5 Timer Events

None.

3.3.6 Other Local Events

None.

3.4 AsyncEMSMDB Client Details

3.4.1 Abstract Data Model

For some functionality on the AsyncEMSMDB interface, it is required that the client store an

Asynchronous Context Handle (ACXH) and use it on subsequent interface calls that require an ACXH.

3.4.2 Timers

No protocol timers are required beyond those internal timers used in RPC to implement resiliency to

network outages. For details, see [MS-RPCE].

%5bMS-OXCNOTIF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=112246

59 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

3.4.3 Initialization

This interface can only be used after first obtaining an Asynchronous Context Handle (ACXH) from

the method EcDoAsyncConnectEx from interface EMSMDB.

3.4.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency
check at target level 5.0, as specified in [MS-RPCE] section 3.

Upon the completion of the RPC method, the client returns the result unmodified to the higher layer.
Some method calls require an RPC context handle, which is created in another method call. For

details about method dependencies, see section 3.

3.4.5 Timer Events

None.

3.4.6 Other Local Events

None.

http://go.microsoft.com/fwlink/?LinkId=112246

60 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

4 Protocol Examples

The following are examples of how a client and server use this protocol connection, submit ROP

commands, and disconnect.

4.1 Client Connecting to Server

1. Client creates an RPC binding handle to the server with the "ncacn_ip_tcp" protocol sequence and
the RPC_C_AUTHN_WINNT authentication method.

2. Client makes EMSMDB interface method call EcDoConnectEx with the following parameters to

establish a Session Context with the server:

hBinding: Binding handle created in step 1.

pcxh: Pointer to CXH to hold output value. In this example the client initializes CXH to zero.

szUserDN: User's distinguished name. String that contains the distinguished named of the user

who is making the EcDoConnectEx call in a directory service. Value: "/o=Microsoft/ou=First
Administrative Group/CN=recipients/CN=janedow".

ulFlags: Value 0x00000000. Regular user access.

ulConMod: Value 0x00340567. Client computed hash on szUserDN value.

cbLimit: Value 0x00000000.

ulCpid: Value 0x000004E4. code page 1252.

ulLcidString: Value 0x00000409. locale 1033 "en-us".

ulLcidSort: Value 0x00000409. locale 1033 "en-us".

ulIcxrLink: Value 0xFFFFFFFF. No session link.

usFCanConvertCodePages: Value 0x01.

rgwClientVersion: Pointer to unsigned short array containing values: 0x000C, 0x183E, and
0x03E8. Client supports protocol client version 12.6206.1000.

pulTimeStamp: Pointer to unsigned long value 0x00000000.

rgbAuxIn: Null pointer value.

cbAuxIn: Value 0x00000000.

rgbAuxOut: Pointer to buffer of size 0x1008.

pcbAuxOut: Pointer to unsigned long value 0x00001008.

3. Server processes EcDoConnectEx request. Verifies that authentication context associated with
hBinding handle has ownership privileges to a directory service object that contains a

distinguished name in field szUserDN. Server creates Session Context and assigns a CXH (using

0x00001234 for this example). Server returns the following output values:

pcxh: Value at CXH pointer is 0x00001234. Note that the actual RPC context handle returned to

the client in this field might not be what the server returned. The RPC layer on the server and
client might map the context handle. The context handle returned to the client is guaranteed to

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf

61 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

be unique and will map back to the server assigned context handle if used on subsequent calls to

the server.

pcmsPollsMax: Value at unsigned long pointer is 0x0000EA60. In this example the client is

instructed to poll for events every 60 seconds.

pcRetry: Value at unsigned long pointer is 0x00000006. In this example the client is instructed

to retry six time before failing.

pcmsRetryDelay: Value at unsigned long pointer is 0x00001770. In this example the client is
instructed to wait 10 seconds between each retry.

picxr: Value at unsigned short pointer is a server assigned session index with value 0x0304.

szDNPrefix: Value at unsigned char pointer is a pointer to a null-terminated ANSI string with

value "/o=Microsoft/ou=First Administrative Group/CN=Configuration/CN=Servers/CN=MBX-
SRV-02"..

szDisplayName: Value at unsigned char pointer is a pointer to a null-terminated ANSI string

with value "MBX-SRV-02".

rgwServerVersion: Value at unsigned short array contains values: 0x0008, 0x82B4, 0x0003.

Server supports protocol server version 8.0.692.3.

rgwBestVersion: Value at unsigned short array contains values: 0x000C, 0x183E and 0x03E8.

pulTimeStamp: Value at unsigned long pointer is a 32-bit value that represents the internal

server time when the Session Context was created.

rgbAuxOut: Server returns the following extended buffer and payload containing auxiliary

information.

RPC_HEADER_EX
T

Payloa
d

AUX_HEADER AUX_EXORGINF
O

Version flags Size SizeActual Size Versio

n

Typ

e

OrgFlags

0x0000 0x0004 0x000

8

0x0008 0x000

8

0x01 0x1

7

0x0000000

1

Payload is not compressed and not obfuscated.

pcbAuxOut: Value at unsigned long pointer is 0x00000010. Field rgbAuxOut is 16 bytes in

length.

Return Value: Value is 0x00000000.

4.2 Client Issuing ROP Commands to Server

1. Client has already established a Session Context with the server and has a valid Session Context

Handle (CXH). For more information, see steps 1 through 3 of section 4.1

%5bMS-OXGLOS%5d.pdf

62 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

2. Client sends ROP commands to server by calling EcDoRpcExt2 using the CXH returned from the

EcDoConnectEx call.

pcxh: Pointer to CXH value which is 0x00001234.

pulFlags: Pointer to unsigned long containing value 0x00000003. Client requests server to not
compress or XOR payload of rgbOut and rgbAuxOut.

rgbIn: Client passes extended buffer and payload containing ROP commands to be processed by

server. See [MS-OXCROPS] for details about ROP commands.

RPC_HEADER_EXT Payload

ROP request Commands

Version flags Size SizeActual RopSize ROPs ServerObjectHandleTable

0x0000 0x0004 0x0152 0x0152 0x0142 320

bytes

16 bytes

Payload is not compressed and not obfuscated.

cbIn: Value of 0x0000015A.

rgbAuxIn: Null pointer value.

cbAuxIn: Value of 0x00000000.

rgbOut: Pointer to buffer of size 0x00018008.

pcbOut: Pointer to unsigned long value 0x00018008.

rgbAuxOut: Pointer to buffer of size 0x1008.

pcbAuxOut: Pointer to unsigned long value 0x00001008.

3. Server processes EcDoRpcExt2 request. Server verifies that CXH is for a valid Session Context

for this user. Server processes ROP request commands and returns ROP response results to
client. Server returns the following output values:

pcxh: Value at CXH pointer is 0x00001234.

pulFlags: Value at unsigned long is 0x00000000.

rgbOut: Server returns the following extended buffer and payload containing ROP response

commands:

RPC_HEADER_EXT Payload

ROP response Commands

Version flags Size SizeActual RopSize ROPs ServerObjectHandleTable

0x0000 0x0004 0x0052 0x0052 0x0042 64
bytes

16 bytes

Payload is not compressed and not obfuscated.

%5bMS-OXCROPS%5d.pdf

63 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

pcbOut: Value is 0x0000005A.

rgbAuxOut: Server returns nothing in the auxiliary output buffer.

pcbAuxOut: Value is 0x00000000.

pulTransTime: Value at unsigned long pointer is 0x00000010. Contains the number of
milliseconds it took the server to process the EcDoRpcExt2 call.

Return Value: Value is 0x00000000.

4.3 Client Receiving "Packed" ROP Response from Server

1. Client has already established a Session Context with the server and has a valid Session Context
Handle (CXH). For more information, see steps 1 through 3 of section 4.1.<13>

2. Client sends ROP commands to server by calling EcDoRpcExt2 using the CXH that is returned
from the EcDoConnectEx call. The last ROP request contains RopReadStream, and so client

requests response chaining (for example, "packing").

pcxh: Pointer to CXH value, which is 0x00001234.

pulFlags: Pointer to unsigned long containing value 0x00000007. Client requests server to not

compress or XOR payload of rgbOut and rgbAuxOut. Client requests response chaining.

rgbIn: Client passes extended buffer and payload containing ROP commands to be processed by

server. See [MS-OXCROPS] for details about ROP commands.

RPC_HEADER_EXT Payload

ROP request Commands

Version flags Size SizeActual RopSize ROPs SOHT

0x0000 0x0004 0x0152 0x0152 0x0142 320 bytes (last ROP command
is RopReadStream)

16
bytes

Payload is not compressed and not obfuscated.

cbIn: Value of 0x0000015A.

rgbAuxIn: Null pointer value.

cbAuxIn: Value of 0x00000000.

rgbOut: Pointer to buffer of size 0x00018008.

pcbOut: Pointer to unsigned long value 0x00018008.

rgbAuxOut: Pointer to buffer of size 0x1008.

pcbAuxOut: Pointer to unsigned long value 0x00001008.

3. Server processes EcDoRpcExt2 request. Server verifies that CXH is for a valid Session Context

for this user. Server processes ROP request commands and returns ROP response results to
client. The last ROP was RopReadStream, and the client has requested chaining; there is more

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

64 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

data to return in the stream being read, there is more room in the rgbOut output buffer and the

server adds another extended buffer and payload. The server returns the following output values:

pcxh: Value at CXH pointer is 0x00001234.

pulFlags: Value at unsigned long is 0x00000000.

rgbOut: Server returns two extended buffer header and payload pairs containing ROP response

commands. The last payload contains only the RopReadStream command.

RPC_HEADER_EXT

flags: 0x0000

Size: 0x7FFE

Payload RPC_HEADER_EXT

flags: 0x0004

Size: 0x2008

Payload

ROP response Commands ROP response Command

RopSize

0x7FEE

ROPs SOHT

16

bytes

RopSize

0x1FF8

ROP SOHT

16

bytes

Payloads are not compressed and not obfuscated.

pcbOut: Value is 0x0000A016.

rgbAuxOut: Server returns nothing in the auxiliary output buffer.

pcbAuxOut: Value is 0x00000000.

pulTransTime: Value at unsigned long pointer is 0x00000010. Contains the number of
milliseconds it took the server to process the EcDoRpcExt2 call.

Return Value: Value is 0x00000000.

4.4 Client Disconnecting from Server

1. Client has already established a Session Context with the server and has a valid Session Context
Handle (CXH). For more information, see steps 1 through 3 of section 4.1.

2. Client is exiting and wants to destroy the Session Context on the server. Client issues
EcDoDisconnect using the CXH that was returned from the EcDoConnectEx call.

pcxh: Pointer to CXH value, which is 0x00001234.

3. Server processes EcDoDisconnect request. Server verifies that CXH is for a valid Session
Context for this user. Server destroys Session Context and invalidates CXH. Server returns the

following output values:

pcxh: Value at CXH pointer is 0x00000000.

Return Value: Value is 0x00000000.

%5bMS-OXCROPS%5d.pdf

65 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

5 Security

5.1 Security Considerations for Implementers

To reduce exploits of server code, it is recommended that anonymous access to the server not be
granted. To make method calls on the EMSMDB and AsyncEMSMDB interfaces, only properly

authenticated RPC binding handles are allowed.

Most of the EMSMDB and AsyncEMSMDB interface methods require a Session Context Handle

(CXH), which can only be created from a successful call to EcDoConnectEx. The server verifies that

the authentication context on the RPC binding handle has sufficient permissions to access the
server and create a Session Context. These method calls are used by the client to create a Session

Context with the server. They are also used to declare to the server who is attempting to access
messaging data on the server through the distinguished named passed in the szUserDN field. It is

recommended that the server verify that the authentication context on the RPC binding handle has
ownership permissions to the directory service object that is associated with the distinguished

name. If the authentication context does not have adequate permissions, then the server fails the

call and does not create a Session Context.

Although the protocol allows for data compression and data obfuscation on method call

EcDoRpcExt2, it is recommended that data compression and data obfuscation not be used in place
of proper encryption. It is recommended that RPC-level encryption be used by the client when

establishing a connection with the server. This will properly encrypt all fields of all method calls on

the EMSMDB and AsyncEMSMDB interfaces.

5.2 Index of Security Parameters

None.

%5bMS-OXGLOS%5d.pdf

66 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

6 Appendix A: Full IDL/ACF

For ease of implementation, the full IDL and ACF is provided in the following sections, where "ms-

rpce.IDL" refers to the IDL found in [MS-RPCE] Appendix A. The syntax uses the IDL syntax

extensions as specified in [MS-RPCE] section 2.2.4 and [MS-RPCE] section 3.1.5.1. For example, as
specified in [MS-RPCE] section 2.2.4.8, a pointer_default declaration is not required and

pointer_default(unique) is assumed.

6.1 IDL

import "ms-rpce.idl";

typedef [context_handle] void * CXH;

typedef [context_handle] void * ACXH;

// Special restricted types to prevent allocation of big buffers.

typedef [range(0x0, 0x40000)] unsigned long BIG_RANGE_ULONG;

typedef [range(0x0, 0x1008)] unsigned long SMALL_RANGE_ULONG;

 [uuid (A4F1DB00-CA47-1067-B31F-00DD010662DA),

 version(0.81),

 pointer_default(unique)]

interface emsmdb

{

long __stdcall Opnum0Reserved(

);

long __stdcall EcDoDisconnect(

[in, out, ref] CXH * pcxh

);

long __stdcall Opnum2Reserved(

);

long __stdcall Opnum3Reserved(

);

long __stdcall EcRRegisterPushNotification(

[in, out, ref] CXH * pcxh,

[in] unsigned long iRpc,

[in, size_is(cbContext)]unsigned char rgbContext[],

[in] unsigned short cbContext,

[in] unsigned long grbitAdviseBits,

[in, size_is(cbCallbackAddress)] unsigned char rgbCallbackAddress[],

[in] unsigned short cbCallbackAddress,

[out] unsigned long *hNotification

);

long __stdcall Opnum5Reserved(

);

long __stdcall EcDummyRpc(

[in] handle_t hBinding

);

long __stdcall Opnum7Reserved(

);

long __stdcall Opnum8Reserved(

%5bMS-OXGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=112246

67 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

);

long __stdcall Opnum9Reserved(

);

long __stdcall EcDoConnectEx(

[in] handle_t hBinding,

[out, ref] CXH * pcxh,

[in, string] unsigned char * szUserDN,

[in] unsigned long ulFlags,

[in] unsigned long ulConMod,

[in] unsigned long cbLimit,

[in] unsigned long ulCpid,

[in] unsigned long ulLcidString,

[in] unsigned long ulLcidSort,

[in] unsigned long ulIcxrLink,

[in] unsigned short usFCanConvertCodePages,

[out] unsigned long * pcmsPollsMax,

[out] unsigned long * pcRetry,

[out] unsigned long * pcmsRetryDelay,

[out] unsigned short * picxr,

[out, string] unsigned char **szDNPrefix,

[out, string] unsigned char **szDisplayName,

[in] unsigned short rgwClientVersion[3],

[out] unsigned short rgwServerVersion[3],

[out] unsigned short rgwBestVersion[3],

[in, out] unsigned long * pulTimeStamp,

[in, size_is(cbAuxIn)] unsigned char rgbAuxIn[],

[in] unsigned long cbAuxIn,

[out, length_is(*pcbAuxOut), size_is(*pcbAuxOut)] unsigned char rgbAuxOut[],

[in, out] SMALL_RANGE_ULONG *pcbAuxOut

);

long __stdcall EcDoRpcExt2(

[in, out, ref] CXH * pcxh,

[in, out] unsigned long *pulFlags,

[in, size_is(cbIn)] unsigned char rgbIn[],

[in] unsigned long cbIn,

[out, length_is(*pcbOut), size_is(*pcbOut)] unsigned char rgbOut[],

[in, out] BIG_RANGE_ULONG *pcbOut,

[in, size_is(cbAuxIn)] unsigned char rgbAuxIn[],

[in] unsigned long cbAuxIn,

[out, length_is(*pcbAuxOut), size_is(*pcbAuxOut)] unsigned char rgbAuxOut[],

[in, out] SMALL_RANGE_ULONG *pcbAuxOut,

[out] unsigned long *pulTransTime

);

long __stdcall Opnum12Reserved(

);

long __stdcall Opnum13Reserved(

);

long __stdcall EcDoAsyncConnectEx(

[in] CXH cxh,

[out, ref] ACXH * pacxh

);

}

68 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

[uuid (5261574A-4572-206E-B268-6B199213B4E4),

 version(0.01),

 pointer_default(unique)]

interface asyncemsmdb

{

long __stdcall EcDoAsyncWaitEx(

[in] ACXH acxh,

[in] unsigned long ulFlagsIn,

[out] unsigned long *pulFlagsOut

);

}

6.2 ACF

The ACF specifies attributes that affect only local performance rather than the network contract.

typedef [context_handle_noserialize] ACXH;

interface asyncemsmdb

{

[async] EcDoAsyncWaitEx();

}

69 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

7 Appendix B: Product Behavior

The information in this specification is applicable to the following product versions:

Microsoft Office Outlook 2003

Microsoft Exchange Server 2003

Microsoft Office Outlook 2007

Microsoft Exchange Server 2007

Microsoft Office Outlook 2010

Microsoft Exchange Server 2010

Exceptions, if any, are noted below. If a service pack number appears with the product version,

behavior changed in that service pack. The new behavior also applies to subsequent service packs of
the product unless otherwise specified.

Unless otherwise specified, any statement of optional behavior in this specification prescribed using

the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does

not follow the prescription.

<1> Section 3.1.4.5: Exchange Server 2010 Beta does not support EcRRegisterPushNotification

when client connection services are deployed on an Exchange server that does not also have a

mailbox store installed. The returned value will always be ecNotSupported.

<2> Section 3.1.4.11: Exchange Server 2010 Beta does not support Session Context linking when

client connection services are deployed on an Exchange server that does not also have a mailbox
store installed. If ulIcxrLink is not 0xFFFFFFFF, then the server will not attempt to search for a

session with the same Session Context and link to them. It will then return the same value in the
pulTimeStamp that was passed in.

<3> Section 3.1.4.11: Exchange Server 2010 Beta does not support Session Context linking when

client connection services are deployed on an Exchange server that does not also have a mailbox
store installed. The call will fail with ecInvalidParam (which is 0x80070057) if cbAuxIn is greater

than 0x00000000 and less than 0x00000008.

<4> Section 3.1.4.11: Exchange Server 2010 Beta does not support Session Context linking when

client connection services are deployed on an Exchange server that does not also have a mailbox

store installed. The returned Session Context Handled will be ecInvalidParam (0x80070057) if the
cbAuxIn parameter is greater than 0x00000000 and less than 0x80070057.

<5> Section 3.1.4.12: Exchange Server 2010 Beta does not support Chaining when client
connection services are deployed on an Exchange server that does not also have a mailbox store

installed. The Chain flag is ignored.

<6> Section 3.1.4.12: Exchange Server 2010 Beta does not require that the server fail based upon

the size of the request buffer size when client connection services are deployed on an Exchange

server that does not also have a mailbox store installed.

<7> Section 3.1.4.12: Exchange Server 2010 Beta does not require that the server fail if the output

buffer is less than 0x00008007 bytes when client connection services are deployed on an Exchange

70 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

server that does not also have a mailbox store installed. It will fail with ecRpcFormat if the output

buffer is not more than 0x00000008 bytes in size.

<8> Section 3.1.4.12: Exchange Server 2010 Beta does not require that the server fail if the output

buffer is larger than 0x00001008 bytes when client connection services are deployed on an
Exchange server that does not also have a mailbox store installed. It will fail with ecRpcFormat if the

cbAuxIn parameter is greater than 0x00000000 and less than 0x00000008

<9> Section 3.1.7.1.2.2: Exchange Server 2010 Beta does not support Chaining of extended buffers
when client connection services are deployed on an Exchange server that does not also have a

mailbox store installed.

<10> Section 3.1.7.4: Exchange Server 2010 Beta does not support Extended Buffer Packing when

client connection services are deployed on an Exchange server that does not also have a
mailboxstore installed.

<11> Section 3.1.8.2: Exchange Server 2010 Beta does not support sending the

AUX_OSVERSIONINFO block when client connection services are deployed on an Exchange server
that does not also have a mailbox store installed.

<12> Section 3.1.8.2: Exchange Server 2010 Beta does not support sending
AUX_CLIENT_CONTROL in the EcDoRpcExt2 method.

<13> Section 4.3: Exchange Server 2010 Beta does not support "Packed" ROP response from the

server when client connection services are deployed on an Exchange server that does not also have
a mailbox store installed. The client must make multiple calls with RopReadStream to retrieve all

data in the chain

7.1 Protocol Sequences

7.1.1 Exchange Server Support

Exchange 2003 SP2 allows all RPC protocol sequences listed in section 2.1.

Exchange 2007 SP1 allows only the following RPC protocol sequences: ncalrpc, ncacn_ip_tcp and

ncacn_http.

7.1.2 Office Client Support

Office 2003 SP3 uses only the following RPC protocol sequences: ncacn_ip_tcp and ncacn_http.

Office 2007 SP1 uses only the following RPC protocol sequences: ncacn_ip_tcp and ncacn_http.

7.2 Authentication Methods

The following table lists the authentication methods supported by Exchange 2003 SP2 and

Exchange 2007 SP1. A client authenticates using one of these authentication methods.

Authentication Method

RPC_C_AUTHN_WINNT

RPC_C_AUTHN_GSS_KERBEROS

RPC_C_AUTHN_GSS_NEGOTIATE

%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf

71 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

7.3 RPC Methods

7.3.1 Exchange Server Support

The following table indicates which RPC methods are supported in which versions of Exchange.

EMSMDB Interface:

Method Exchange

2003 SP2

Exchange

2007 SP1

EcDoDisconnect

EcRRegisterPushNotification

EcDummyRpc

EcDoConnectEx

EcDoRpcExt2

EcDoAsyncConnectEx

AsyncEMSMDB Interface:

Method Exchange

2003 SP2

Exchange

2007 SP1

EcDoAsyncWaitEx

7.3.2 Office Client Support

An Office client will use different RPC methods based on the version of Exchange that it is accessing.

7.3.2.1 Accessing Exchange 2003

The following table indicates which RPC methods are used by an Office client when accessing a

computer that is running Exchange 2003.

EMSMDB Interface:

Method Office

2003 SP2

Office

2007 SP1

EcDoDisconnect

EcRRegisterPushNotification

EcDummyRpc

EcDoConnectEx

EcDoRpcExt2

EcDoAsyncConnectEx

72 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

AsyncEMSMDB Interface:

Method Office

2003 SP2

Office

2007 SP1

EcDoAsyncWaitEx

7.3.2.2 Accessing Exchange 2007

The following table indicates which RPC methods are used by an Office client when it is accessing a
computer that is running Exchange 2007.

EMSMDB Interface:

Method Office

2003 SP2

Office

2007 SP1

EcDoDisconnect

EcRRegisterPushNotification

EcDummyRpc

EcDoConnectEx

EcDoRpcExt2

EcDoAsyncConnectEx

AsyncEMSMDB Interface:

Method Office

2003 SP2

Office

2007 SP1

EcDoAsyncWaitEx

7.4 Client Access Licenses

As of Exchange 2007 SP1, the server no longer counts individual connections for Client Access
License accounting, so Session Context linking is not required in method call EcDoConnectEx on

the EMSMDB interface.

73 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

8 Change Tracking

This section will report content and/or editorial changes, beginning with the next release.

74 / 74

[MS-OXCRPC] — v20090712
 Wire Format Protocol Specification

 Copyright © 2008 Microsoft Corporation.

 Release: Sunday, July 12, 2009

9 Index

C

Change tracking

E

Examples - overview

G

Glossary

I

Informative references
Introduction

M

Messages
overview

N

Normative references

O

Overview (synopsis)

P

Preconditions
Prerequisites
Product behavior

R

References
informative
normative

Relationship to other protocols

S

Security
overview

T

Tracking changes

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Protocol Overview
	1.3.1 Initiating Communication with the Server
	1.3.2 Issuing Remote Operations for Mailbox Data
	1.3.3 Terminating Communication with the Server
	1.3.4 Client/Server Communication Lifetime

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Simple Data Types
	2.2.1.1 CXH
	2.2.1.2 ACXH
	2.2.1.3 BIG_RANGE_ULONG
	2.2.1.4 SMALL_RANGE_ULONG

	2.2.2 Structures
	2.2.2.1 RPC_HEADER_EXT
	2.2.2.2 AUX_HEADER
	2.2.2.3 AUX_PERF_REQUESTID
	2.2.2.4 AUX_PERF_SESSIONINFO
	2.2.2.5 AUX_PERF_SESSIONINFO_V2
	2.2.2.6 AUX_PERF_CLIENTINFO
	2.2.2.7 AUX_PERF_SERVERINFO
	2.2.2.8 AUX_PERF_PROCESSINFO
	2.2.2.9 AUX_PERF_DEFMDB_SUCCESS
	2.2.2.10 AUX_PERF_DEFGC_SUCCESS
	2.2.2.11 AUX_PERF_MDB_SUCCESS
	2.2.2.12 AUX_PERF_MDB_SUCCESS_V2
	2.2.2.13 AUX_PERF_GC_SUCCESS
	2.2.2.14 AUX_PERF_GC_SUCCESS_V2
	2.2.2.15 AUX_PERF_FAILURE
	2.2.2.16 AUX_PERF_FAILURE_V2
	2.2.2.17 AUX_CLIENT_CONTROL
	2.2.2.18 AUX_OSVERSIONINFO<>
	2.2.2.19 AUX_EXORGINFO

	3 Protocol Details
	3.1 EMSMDB Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 Opnum0Reserved (opnum 0)
	3.1.4.2 EcDoDisconnect (opnum 1)
	3.1.4.3 Opnum2Reserved (opnum 2)
	3.1.4.4 Opnum3Reserved (opnum 3)
	3.1.4.5 EcRRegisterPushNotification (opnum 4)
	3.1.4.6 Opnum5Reserved (opnum 5)
	3.1.4.7 EcDummyRpc (opnum 6)
	3.1.4.8 Opnum7Reserved (opnum 7)
	3.1.4.9 Opnum8Reserved (opnum 8)
	3.1.4.10 Opnum9Reserved (opnum 9)
	3.1.4.11 EcDoConnectEx (opnum 10)
	3.1.4.12 EcDoRpcExt2 (opnum 11)
	3.1.4.13 Opnum12Reserved (opnum 12)
	3.1.4.14 Opnum13Reserved (opnum 13)
	3.1.4.15 EcDoAsyncConnectEx (opnum 14)

	3.1.5 Timer Events
	3.1.6 Other Local Events
	3.1.7 Extended Buffer Handling
	3.1.7.1 Extended Buffer Format
	3.1.7.1.1 EcDoConnectEx
	3.1.7.1.1.1 rgbAuxIn
	3.1.7.1.1.2 rgbAuxOut

	3.1.7.1.2 EcDoRpcExt2
	3.1.7.1.2.1 rgbIn
	3.1.7.1.2.2 rgbOut
	3.1.7.1.2.3 rgbAuxIn
	3.1.7.1.2.4 rgbAuxOut

	3.1.7.2 Compression Algorithm
	3.1.7.2.1 LZ77 Compression Algorithm
	3.1.7.2.1.1 Compression Algorithm Terminology
	3.1.7.2.1.2 Using the Compression Algorithm
	3.1.7.2.1.3 Compression Process
	3.1.7.2.1.4 Compression Process Example

	3.1.7.2.2 DIRECT2 Encoding Algorithm
	3.1.7.2.2.1 Bitmask
	3.1.7.2.2.2 Encoding Metadata
	3.1.7.2.2.3 Metadata Offset
	3.1.7.2.2.4 Match Length

	3.1.7.3 Obfuscation Algorithm
	3.1.7.4 Extended Buffer Packing

	3.1.8 Auxiliary Buffer
	3.1.8.1 Client Performance Monitoring
	3.1.8.2 Server Topology Information

	3.1.9 Version Checking
	3.1.9.1 Version Number Comparison
	3.1.9.2 Server Versions
	3.1.9.3 Client Versions

	3.2 EMSMDB Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Sending EcDoConnectEx
	3.2.4.2 Sending EcDoRpcExt2
	3.2.4.3 Handling Server Too Busy
	3.2.4.4 Handling Connection Failures

	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 AsyncEMSMDB Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 EcDoAsyncWaitEx (opnum 0)

	3.3.5 Timer Events
	3.3.6 Other Local Events

	3.4 AsyncEMSMDB Client Details
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Message Processing Events and Sequencing Rules
	3.4.5 Timer Events
	3.4.6 Other Local Events

	4 Protocol Examples
	4.1 Client Connecting to Server
	4.2 Client Issuing ROP Commands to Server
	4.3 Client Receiving "Packed" ROP Response from Server
	4.4 Client Disconnecting from Server

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL/ACF
	6.1 IDL
	6.2 ACF

	7 Appendix B: Product Behavior
	7.1 Protocol Sequences
	7.1.1 Exchange Server Support
	7.1.2 Office Client Support

	7.2 Authentication Methods
	7.3 RPC Methods
	7.3.1 Exchange Server Support
	7.3.2 Office Client Support
	7.3.2.1 Accessing Exchange 2003
	7.3.2.2 Accessing Exchange 2007

	7.4 Client Access Licenses

	8 Change Tracking
	9 Index

