[IMS-OXCRPC]: Wire Format Protocol
Specification

Intellectual Property Rights Notice for Protocol Documentation

e Copyrights. This protocol documentation is covered by Microsoft copyrights.
Regardless of any other terms that are contained in the terms of use for the
Microsoft website that hosts this documentation, you may make copies of it in
order to develop implementations of the protocols, and may distributeyportiens of
it in your implementations of the protocols or your documentation ag‘necessary, to
properly document the implementation. This permission als@ appli€s to any ¥
documents that are referenced in the protocol documentation.

e No Trade Secrets. Microsoft does not claim anghtrade secret rightsm this
documentation.

e Patents. Microsoft has patents that may coveryour implementations of the
protocols. Neither this notice nor Mi€rosoft's delivery of the documentation grants
any licenses under those or any other Microsoft patents. However, the protocols
may be covered by Microsoft’sfOpen Specification Promise (available here:
http://www.microsoft.com/interop/osp/default.mspx). If you would prefer a
written license, ot if the ptotocols are noticovered by the OSP, patent licenses are
available by contacting protocol@microseff:com.

e Trademarks) The names,of companies and products contained in this
documentation may be covered by trademarks or similar intellectual property
rights. Thismetice does not grant any licenses under those rights.

Reservation of Rights. All other rights are reserved, and this notice does not grant any
rights other thanyspécifically described above, whether by implication, estoppel, or
otherwise.

Preliminary Documentation. This documentation is preliminary documentation for these
protocols. Sinee the documentation may change between this preliminary version and the
final version, there are risks in relying on preliminary documentation. To the extent that you
incur additional development obligations or any other costs as a result of relying on this
preliminary documentation, you do so at your own risk.

10of93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

http://www.microsoft.com/interop/osp/default.mspx
mailto:protocol@microsoft.com

Tools. This protocol documentation is intended for use in conjunction with publicly available
standard specifications and networking programming art, and assumes that the reader is either
familiar with the aforementioned material or has immediate access to it. A protocol
specification does not require the use of Microsoft programming tools or programming
environments in order for a Licensee to develop an implementation. Licensees who have
access to Microsoft programming tools and environments are free to take advantage of them.

Revision Summary

Author Date Version | Comments
Microsoft April 4, 0.1 Initial Availability
Corporation 2008

[MS-OXCRPC] - v0.1
Wire Format Protocol Specification

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

20f93

Table of Contents

1 Introduction 5
LT GLOSSAIY .ttt ettt ettt s e s et e s s s esesa e ebesasesesenenennes 5
1.2 RETETEIICES .ot e e e e e ee e e e e e e e e e e eeeeaeeesaneee e eeesaneesaneresaneesaneeesaneesanees

1.2.1 Normative REfEINCES........covviririririririricieieicieieieieieeiece et
122 Informative RETEIENCESocoviiririririririeieieieieieeieece et
1.3 Protocol OVErview (SYNOPSIS)......eueuerurueueuerirueeeniririeienintsieseesesteseesesseseesessesenenes
1.3.1 Initiating Communication with the Server...........ccocoeevevveecneeee ol
1.3.2 Issuing Remote Operations for Mailbox Data...........cccocevrereenee. :
1.3.3 Terminating Communication with the Serverc.cccoeunn.e. h,
1.3.4 Client/Server Communication Lifetime...........c.coooevevevnn i -
1.4 Relationship to Other Protocols..........c.ceeeeriereeciniereeiniereneenes st
1.5 Prerequisites/Preconditions ...

1.6 Applicability Statement o W Y e 9
1.7 Versioning and Capability Negotiation ... 9
1.8 Vendor-Extensible Fields
1.9 Standards Assignments............c.cceevereerenenen.
2 Messages
2.1 TranSport.......ccccececeveererenerenenenieenienens
2.2 Common Data Typesccoceevrererecfirererennnnns
22.1 Simply Data Types o 11
222 SHUCKHUTES ...oueveiirerees it il ettt ettt nene 11

3 Protocol Details...% § 26
3.1 EMSMDB Serve 1S e e ettt ettt ettt ettt ettt ettt eaeereeaeerenan 27
3.1.1 thact DataMIOdel ...l 27
3.1.2 TINIETS v raee i ceveneeeeessottot s eseeseeseesensensensessensessesseseeseesensensensensensenseseeseeseesens 27
3.13 IHALZATOML. ..o ettt ettt et et ettt et ee s easereeaeereere s e 27
3.14 e rocessing Events and Sequencing Rules ..., 28
3.1.5 B ettt e e e b et et be st e bensensesneresaresesestentan 43
3.1.6 S ettt et et ettt et ettt e et e ete et e et et et et eteeteeteeteete et e eteet et ereereeteereeteateans 43
Handling ..o 43

LAY BUFTET ... 56

Version ChECKINGceivieueiiririeeieeeee ettt 65

B ClLEent DEtailS........c.coveveieieeeeieeteeteeteeeeeeeee ettt ettt e 69

tract Data MOAELc.oouveeiieiiiececceeeeee et 69

THIMIETS ..ttt ettt ettt ettt ettt et e eseeteeteeseese et et ensensensesseseeseenan 69
INItIALZALION ...ttt ettt et et eve et et ns e ereeneere s enan 69

324 Message Processing Events and Sequencing Rulescccoceevveeveeniicnienennne. 69
2.5 TIMEI EVENLS......oovivivieceeeeeeeeeteeteeteeteete ettt et ea et te e eseeneenens 72
32.6 Other LoCal EVENLS.....c.cc.ocviviieieeicieeiecteeteeteet ettt e 72
3093

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

3.3 AsyncEMSMDB Server Detailsccccoevieerieenieinieiieeieesieesie e 72

33.1 Abstract Data Modelcoooieieieiiieieiieieeee et 73
332 THIMIETS ettt ettt ettt et b et b e e e b s sebesesa s esesanesesens 73
333 INIHAHZATON ...cveeieieeieieieteceete ettt ba e se e s e s senenas 73
3.3.4 Message Processing Events and Sequencing Rulescccccovveveeriniirencnnnee. 74
335 TIMET EVENLS.....cuiiieieeiiieieetetee ettt ettt
33.6 Other Local EVENLS......cccoioieuiieiieeieecteteesiees ettt aenas
3.4 AsyncEMSMDB Client Detailsccccoeririereirinieeininieeiieeeeereeeieve s .
3.4.1 Abstract Data Modelccoovivieieiniieeiieeeeeeceeeeeeee e s
342 THMICTS oottt s e s s e s sens
343 INitialiZAtioN......ccceieieeeeiiieiec et N ...
344 Message Processing Events and Sequencing Rules&..0..0

345 Timer Events
34.6 Other Local Events
4 Protocol Examples AP
4.1 Client Connecting t0 SETVET........cceueueuirerueueerieeeeeresae bt eveeeneneres
4.2 Client Issuing ROP Commands to Servefh,..............
4.3 Client Receiving “Packed” ROP Response from Serverh........ccocoveiovriereeiniererennnns 80

4.4 Client Disconnecting from Server..............c.ciwemineeeeeeeeeeisisaBieceeceeieneeneeeeeeseeeeseeees 82
5 Security ! 83
5.1 Security Considerations for Implem: T ettt ae s 83
5.2 Index of Security Parameters.... ilcooooo it 83
6 Appendix A: Full IDL/ACF...... . W 83

7.1.1 ETVET SUPPOEL........coviviiiiiiiiiiinieiiee e sees 88
7.1.2 f £ SUPPOTT ...ttt 88

40f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

1 Introduction

The Wire Format Protocol is specific to the EMSMDB and AsyncEMSMDB protocol
interface between a client and server. This interface has been traditionally used by an Outlook
client to communicate with an Exchange messaging server.

1.1 Glossary
The following terms are defined in [MS-RPCE]:

Authentication Level

Authentication Service

Dynamic Endpoint

Endpoint

Globally Unique Identifier (GUID)

Interface Definition Language (IDL) Q

Microsoft Interface Definition LanguageﬁlDL)
Network Data Representation (NDR)

Opnum
Remote Procedure Call (RPC)
RPC Protocol Sequence
RPC Transfer Syn‘

Security Provid

Universal Unig

synchronous Context Handle (ACXH): An RPC context handle used by a client
when issuing RPC calls against a server on AsyncEMSMDB interface methods.
Represents a handle to a unique Session Context on the server.

sion Context: A server-side partitioning for client isolation. All client actions
against server are scoped to a specific Session Context. All messaging objects and
data opened by a client are isolated to a Session Context.

50/93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Session Context Handle (CXH): An RPC context handle used by a client when
issuing RPC calls against a server on EMSMDB interface methods. Represents a
handle to a unique Session Context on the server.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used
as described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD,
or SHOULD NOT.

1.2 References

1.2.1 Normative References

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, Augu
http://www.opengroup.org/public/pubs/catalog/c706.htm.

2008.

[MS-OXCNOTIF] Microsoft Corporation, "Cog\f otificati
2008.

[MS-OXCROPS] Microsoft Corporation, "Remote List and Encoding
Protocol Specification", April 2008.
[MS-OXCSTOR] Microsoft Corporatio

[MS-OXGLOS] Microsoft Corporati change Protocols Master Glossary", April
2008.

[RFC2119] Brad
14, RFC 2119, Marc

., "Ke ds for RFCs to Indicate Requirement Levels", BCP

rfc/rfc2119.txt.

Protocol Overview (Synopsis)

The [MS-OXCRPC] protocol describes the RPC interfaces used by a messaging client to
communicate with a messaging server to access personal messaging data over the Office

60f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

http://www.opengroup.org/public/pubs/catalog/c706.htm
http://www.ietf.org/rfc/rfc2119.txt
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=113717

Exchange Protocol. The Office Exchange Protocol is comprised of the EMSMDB and
AsyncEMSMDB RPC interfaces.

1.3.1 Initiating Communication with the Server

Before a client can retrieve private mailbox or public folder data from a server on the
EMSMDB interface, it MUST first make a call to EcDoConnectEx and establish a Session
Context Handle (CXH). The session context handle is a RPC context handle. The client
MUST store this Session Context Handle and use it on subsequent RPC calls on the
EMSMDB interface. The server uses the Session Context Handle to identify the cliént and
user who is issuing requests and under which context to perform operations against messaging
data.

The EMSMDB interface function EcDoConnectEx is used to create a CXH with the, server.
The server MUST verify that the authentication context used to make the RPCfunction,call
EcDoConnectEx has access rights to perform operations as, or on.the behalfof the userwhose
distinguished name (DN) is provided on the RPC call. This ig{done towalidate that/the client
has permission to perform operations as the user specified in the RPC callylf this access check
fails, the server MUST fail the RPC call with andecess denied return code.

If the security check passes, the server MUST creatéa Session Context. A CXH which refers
to the Session Context MUST be returned to theselient m the response to EcDoConnectEx.
The returned CXH MUST be used in subsequent callsito the server.

1.3.2 Issuing Remote Operations for Mailbox Data

The client retrieves private mailbox or public foldeér data through the interface function
EcDoRpcExt2. There areno separatcinterface functions to perform different operations
against mailbox data. A singl€interface funetion is used to submit a group of remote operation
(ROP) commands 1o the server. See [MS-OXEROPS] for additional information on ROP
commands. The ROPtequest operatiens are tokenized into a request buffer and sent to the
server as a byte arraysLhe server must then parse the ROP request buffer and perform actions.
The response toghese actions are then serialized into a ROP response buffer and returned to
the client as a byte array. At the EMSMDB interface level, the format of these ROP request
and response buffers(is not uiiderstood. See [MS-OXCROPS] for additional information on
how to interpretthe ROP buffers. The EMSMDB interface function EcDoRpcExt2 is just the
meelianism in which toypass the ROP request buffer to the server.

The client MUST pass in the call to EcDoRpcExt2 the CXH which was created in a successful
calldo the interfaee function EcDoConnectEx. The server uses the CXH to identify who is
isSuing the remote operation ROP commands and under which Session Context to perform
them.

1.3.3, Terminating Communication with the Server

When a client wishes to terminate communication with a server, it MUST call
EcDoDisconnect. The client MUST pass in the call to EcDoDisconnect the CXH which was

7 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

created in a successful call to the interface function EcDoConnectEx. The server SHOULD
cleanup any Session Context data associated with this CXH.

1.3.4 Client/Server Communication Lifetime

The following sequence diagram shows a typical example of the client and server
communication lifetime. This is a simplified overview of how the client connects, issues
remote operation ROP commands, and disconnects from the server.

1) Client initiates communication
with server.

returns a

3) Client saves session context
handle for subsequent calls.

4) Client sends remote operation
ROP commands to server with
saved session context handle.

ion context handle

session context and processes
eration ROP commands

e session context. Results

6) Client processes remote to ROP commands are returned.

operation ROP command results.

Client continues to si
additional remote oper:
commands to server with
session context handl

Server continues to processes all
remote operation ROP command
requests using the session context
handle provided by the client.

8) Server uses session context handle
to find session context. Session
context is destroyed and session
context handle is invalidated.

80f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Figure 1: Client/server communications

1.4 Relationship to Other Protocols

This protocol is dependent upon RPC as specified in [MS-RPCE] and various network
protocol sequences for its transport.

1.5 Prerequisites/Preconditions
The Office Exchange Protocol is a set of RPC interfaces and has the same prere
specified in [MS-RPCE].

It is assumed that an Office Exchange Protocol client has obtained the
machine that supports the Office Exchange Protocol before these proto
a client does this is outside of the scope of this specification.

1.6 Applicability Statement

The protocol describe herein is applicable to en&nments
mailbox and/or public folder messaging end-user d

require aceess to private

1.7 Versioning and Capability Nego

specified in sect‘2. 1.

Protocol Versions: C interface EMSMDB has a single version

RPC interface EMSMDB has a single interface
as been extended by adding additional methods at the end.
§ specified in section 3.1.

ication Methods: This protocol supports the following

Vendor-Extensible Fields

90f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

1.9 Standards Assignments

Parameter Value Reference
EMSMDB A4F1DB00-CA47-1067-B31F- 3.1
RPC Interface UUID 00DD010662DA

AsyncEMSMDB 5261574A-4572-206E-B268-6B199213B4E4 33
RPC Interface UUID

RPC/HTTP protocol 6001
sequence endpoint

LRPC protocol sequence | MSExchangelS LPC
endpoint

2 Messages

\ 4

This protocol works over the following protoco

2.1 Transport

Protocol Sequence

ncalrpc

ncacn_ip_tcp ‘
ncacn_http

This protocol
“ncacn_http”.

ndpoints for network protocol sequences “ncalrpc” and
town endpoints are used:

Endpoint

MSExchangelS LPC

6001

all other network protocol sequences the protocol uses RPC Dynamic Endpoints as
spectfied in Part 4 of [C706].

This protocol MUST use the UUID specified in section 1.9. The RPC version number is 4.0

10093

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

This protocol allows any user to establish an authenticated connection to the RPC server using
an authentication method as specified in [MS-RPCE]. The protocol uses underlying RPC
protocol to retrieve the identity of the caller that made the method call as specified in [MS-
RPCE]. The server SHOULD use this identity to perform method specific access checks.

2.2 Common Data Types

In addition to RPC base types and definitions specified in [C706] and [MS-RPCE], additional
data types are defined below.

2.2.1 Simply Data Types
2.2.1.1 CXH
typedef [context handle] void * CXH; Q

2.2.1.2 ACXH

typedef [context handle] void * ACXH;

2.2.2 Structures

2.2.2.1 RPC_HEADER E

ags (2 bytes): Flags which specify how data following this header MUSTSHOULD be
erpreted. The following flags are valid.

11 0f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Flag Value Description

Compressed 0x0001 The data following the RPC_ HEADER EXT
is compressed. The size of the data when
uncompressed is in field SizeActual. If this
flag is not set, the Size and SizeActual fields
MUST be the same.

XorMagic 0x0002 The data following the RPC_HEAD

Last 0x0004 Indicates there is not anoth
RPC_HEADER EXT
the current RPC_HE
used to indicate
with its own
the other.

Size (2 bytes): The total length of the payload
structure. This length does not include the le

not set, this value MUS T e equal

2.2.2.2 AUX_HEADE

ersion (1 byte): Version information of the payload data following the AUX HEADER.
y value in conjunction with the Type field determines which structure to use to interpret the
a following the header.

12 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Version Value

AUX_VERSION 1 0x01

AUX_VERSION 2 0x02

Type (1 byte): Type of payload data following the AUX HEADER. This value in
conjunction with the Version field determines which structure to use to interpret th
following the header.

This is a list of block types and the corresponding structure following the
when the Version field is AUX VERSION 1.

Type Value

AUX_TYPE PERF REQUESTID {oxo1

AUX_TYPE PERF CLIENTDINFO

AUX_TYPE PERF SERVERINFO

AUX TYPE PERF SESSIONINFO ~ PERF SESSIONINFO

UX_PERF DEFMDB_SUCCES
S

AUX_PERF_DEFGC_SUCCESS

AUX_PERF MDB _SUCCESS

AUX_PERF_GC_SUCCESS

AUX_PERF FAILURE

AUX CLIENT CONTROL

AUX_PERF PROCESSINFO

AUX_PERF DEFMDB_SUCCES
S

AUX_PERF DEFGC_SUCCESS

TYPE PERF BG MDB _SUCCESS AUX_PERF MDB SUCCESS

13093

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Type Value | Payload

AUX TYPE PERF BG GC SUCCESS 0xOF | AUX PERF GC SUCCESS
AUX_TYPE PERF BG FAILURE 0x10 | AUX PERF FAILURE
AUX_TYPE PERF FG DEFMDB SUCCE |0x11 |AUX PERF DEFMDB SUCCE
SS S

AUX TYPE PERF FG DEFGC SUCCES |0x12 |AUX PERF DEFGC |

S

AUX TYPE PERF FG MDB SUCCESS |0x13 |AUX PERF ESS
AUX TYPE PERF FG GC SUCCESS 0x14 | AUX PE CS

AUX TYPE PERF FG FAILURE 0x15 | AUX “F

AUX TYPE OSINFO 0x16 | AUX OS
AUX_TYPE_EXORGINO @17 EXORG

This is a list of block types and the correspo
when the Version field is AUX VERSIO

owing the AUX HEADER

Payload

AUX_PERF_SESSIONINFO V2

AUX_PERF MDB _SUCCESS_V2

AUX_PERF _GC_SUCCESS V2

AUX_PERF FAILURE V2

edef struct AUX PERF REQUESTID ({
unsigned short SessionID;

unsigned short RequestID;

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

140f93

} AUX PERF REQUESTID;

SessionID (2 bytes): Session identification number.

RequestID (2 bytes): Request identification number.

2.2.24 AUX PERF_SESSIONINFO

typedef struct AUX PERF SESSIONINFO ({
unsigned short SessionID;
GUID SessionGuid;

} AUX_PERF SESSIONINFO;

SessionID (2 bytes): Session identification nun‘r.

SessionGuid (16 bytes): GUID representing the cli sion to ciate with the session
identification number in field SessionID.

2.2.2.5 AUX_PERF_SESSION

.2.2.6 AUX PERF_CLIENTINFO

typedef struct AUX PERF CLIENTINFO {

unsigned long AdapterSpeed;

15093

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

unsigned short ClientID;
unsigned short MachineNameOffset;
unsigned short UserNameOffset;

unsigned short ClientIPSize;

unsigned short ClientIPOffset;
unsigned short ClientIPMaskSize;
unsigned short ClientIPMaskOffset;
unsigned short AdapterNameOffset;
unsigned short MacAddressSize;
unsigned short MacAddressOffset;
unsigned short ClientMode;

} AUX PERF CLIENTINFO;

AdapterSpeed (4 bytes): Speed of client machines netwo

structure that MUST exist prior to this struc
string which contains the client machine

UserNameOffset (2 bytes): Offset re eginning of the AUX HEADER structure
that MUST exist prior ty i a null-terminated Unicode string which
contains the user’s account n.

of the IP subnet mask is found in field ClientIPMaskSize.

dapterNameOffset (2 bytes): Offset relative to the beginning of the AUX HEADER
ructure that MUST exist prior to this structure which points to a null-terminated Unicode
ing which contains the client network adapter name.

16 0f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

MacAddressSize (2 bytes): Size of the network adapter MAC address referenced by field
MacAddressOffset.

MacAddressOffset (2 bytes): Offset relative to the beginning of the AUX HEADER
structure that MUST exist prior to this structure which points to the client network adapter
MAC address. Size of the network adapter MAC address is found in field MacAddressSize.

ClientMode (2 bytes): Determines the mode in which the client is running.

Mode Value | Description

CLIENTMODE UNKNOWN 0x00

CLIENTMODE CLASSIC 0x01

CLIENTMODE CACHED 0x02 Client is runnigg

2.2.2.7 AUX PERF_SERVERINFO

typedef struct AUX PERF SERVERIN

unsigned short ServerID;

unsigned shori

unsigned short ServerDN

med server identification number.

pe assigned by client.

Value | Description

0x00 Unknown server type.

ERVERTYPE PRIVATE 0x01 Client server connection servicing private
mailbox data.
SERVERTYPE PUBLIC 0x02 Client server connecting servicing public

17 of 93
[MS-OXCRPC] - v0.1
Wire Format Protocol Specification

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Type Value | Description

folder data.

SERVERTYPE DIRECTORY | 0x03 Client server connection servicing directory
data.

SERVERTYPE REFERRAL 0x04 | Client server connection servicing referrals.

contains the server’s distinguished name.

ServerNameOffset (2 bytes): Offset relative to the beginning of the Al
structure that MUST exist prior to this structure which points to
string which contains the server name.

2.2.2.8 AUX_PERF_PROCESSINFOO>

typedef struct AUX PERF PROCESSINFO
unsigned short ProcessID;
GUID ProcessGuid;
unsigned short Process

} AUX PERF PROCESS I‘;

ative to the beginning of the AUX HEADER structure that
e which points to a null-terminated Unicode string which

PERF_DEFMDB_SUCCESS

ypedef struct AUX PERF DEFMDB SUCCESS {
unsigned long TimeSinceRequest;
unsigned long TimeToCompleteRequest;

unsigned short RequestID;

18 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

} AUX_PERF DEFMDB SUCCESS;

TimeSinceRequest (4 bytes): Number of milliseconds since successful request occurred.

TimeToCompleteRequest (4 bytes): Number of milliseconds the successful request took to
complete.

RequestID (2 bytes): Request identification number.

222.10 AUX_PERF DEFGC SUCCESS

typedef struct AUX PERF DEFGC SUCCESS {
unsigned short ServerID;
unsigned short SessionID;
unsigned long TimeSinceRequest;
unsigned long TimeToCompleteReq%t ;
unsigned char RequestOperation;

} AUX_PERF DEFGC SUCCESS;

since successful request occurred.

f milliseconds the successful request took to

complete.

REF _MDB SUCCESS {
ed short ClientID;
short ServerID;

unsigned short SessionID;

unsigned short RequestID;

unsigned long TimeSinceRequest;

unsigned long TimeToCompleteRequest;

} AUX PERF MDB SUCCESS;

19 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

ClientID (2 bytes): Client identification number.
ServerID (2 bytes): Server identification number.
SessionID (2 bytes): Session identification number.

RequestID (2 bytes): Request identification number.

TimeSinceRequest (4 bytes): Number of milliseconds since successful request o

TimeToCompleteRequest (4 bytes): Number of milliseconds the success
complete.

22212 AUX_PERF MDB _SUCCESS V2

typedef struct AUX PERF MDB SUCCESS V2 {
unsigned short ProcessID; ‘
unsigned short ClientID;

unsigned short ServerID;

unsigned short SessionID;
unsigned short RequestID;
unsigned
unsigned

} AUX PERF MDB_

eToCompleteRequest (4 bytes): Number of milliseconds the successful request took to

20 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

2.2.2.13 AUX_PERF _GC_SUCCESS

typedef struct AUX PERF GC SUCCESS ({
unsigned short ClientID;
unsigned short ServerID;
unsigned short SessionID;
unsigned long TimeSinceRequest;
unsigned long TimeToCompleteRequest;
unsigned char RequestOperation;

} AUX_PERF_GC_SUCCESS;

ClientID (2 bytes): Client identification number.
ServerID (2 bytes): Server identification number.

SessionID (2 bytes): Session identification numgr.

TimeSinceRequest (2 bytes): Number of millisecon: ce succ request occurred.

TimeToCompleteRequest (2 bytes) cO e successful request took to
complete.

RequestOperation (1 byte): Clie ion which was successful.

igned long TimeSinceRequest;
d long TimeToCompleteRequest;
unsign char RequestOperation;

AUX_PERF GC SUCCESS V2;

P ssID (2 bytes): Process identification number.

ClientID (2 bytes): Client identification number.

21093

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

ServerID (2 bytes): Server identification number.
SessionID (2 bytes): Session identification number.

TimeSinceRequest (4 bytes): Number of milliseconds since successful request occurred.

TimeToCompleteRequest (4 bytes): Number of milliseconds the successful request took to
complete.

RequestOperation (1 byte): Client-defined operation which was successful.

2.2.2.15 AUX PERF FAILURE

typedef struct AUX PERF FAILURE {
unsigned short ClientID;
unsigned short ServerID;
unsigned short SessionID;
unsigned short RequestID; ‘

unsigned long TimeSinceRequest;

unsigned long TimeToFailReques
unsigned long ResultCode;
unsigned

} AUX PERF FAILURE;

esultCode (4 bytes): Error code return of failed request.

estOperation (1 byte): Client-defined operation which failed.

220193

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

2.22.16 AUX_PERF FAILURE V2

typedef struct AUX PERF FAILURE V2 ({

unsigned short ProcessID;

unsigned short ClientID;
unsigned short ServerID;
unsigned short SessionID;
unsigned short RequestID;
unsigned long TimeSinceRequest;
unsigned long TimeToFailRequest;
unsigned long ResultCode;
unsigned char RequestOperation;

} AUX PERF FAILURE V2;

ProcessID (2 bytes): Process identification nm&r.

ClientID (2 bytes): Client identification numbe

AUX_CLIENT_CONTROL

gypedef struct AUX CLIENT CONTROL {
unsigned long EnableFlags;
unsigned long ExpiryTime;

} AUX_PERF CONTROL;

23 0f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

EnableFlags (4 bytes): The following table describes the flags that instruct the client to either
enable or disable behavior.

Flag Value Description

ENABLE PERF SENDTOSERVER | 0x00000001 | Client MUST start sending
performance information to se

ENABLE PERF SENDTOMAILBOX | 0x00000002 | Client MUST start sendi
performance information a
a special locationg

ENABLE COMPRESSION 0x00000004

up to
fault
‘ the server
ENABLE HTTP_TUNNELING
ENABLE PERF SENDGCDATA ST include performance

pired data is not transmitted to the server. This
rformance information stored on the client.

long OSVersionInfoSize;
long MajorVersion;

long MinorVersion;
unsigned long BuildNumber;
unsigned long Reservedl;
unsigned char Reserverd2[128];

unsigned short ServicePackMajor;

240f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

unsigned short ServicePackMinor;
unsigned short Reserved3;
unsigned short Reserved4;

unsigned char Reserved5;

} AUX OSVERSIONINFO;

OSVersionInfoSize (4 bytes): Size of the AUX OSVERSIONINFO structure.
MajorVersion (4 bytes): Major version number of the server’s operating syste
MinorVersion (4 bytes): Minor version number of the server’s operatin,

BuildNumber (4 bytes): Build number of the server’s operating syste

Reserved2 (128 bytes): Reserved. Content MU‘ be ign

ServicePackMajor (2 bytes): Major version numb latest
server.

server.
Reserved3 (2 bytes): Reserved.

Reserved4 (2 bytes): Rese

250f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Flag Value Description

PUBLIC FOLDERS ENABLED 0x00000001 | Organization has public folders.

3 Protocol Details

There are two RPC interfaces which comprise the Office-Exchange Protocol: EMS
AsyncEMSMDB. This section describes the details of each interface.

For some functionality through the EMSMDB interface, the client is required to
method EcDoConnectEx first to establish a Session Context Handle (C
RPC context handle. In order to establish a CXH, a call to EcDoConne
successful. The following table lists all method calls which require a v

CXH Based Methods Interface ‘

EcDoDisconnect EMSMDB

EcRRegisterPushNotification | EMSMDB

EcDoConnectEx

EcDoRpcExt2

EcDoAsyncConnectEx‘

Interface

DoAsyncWaitEx AsyncEMSMDB

26 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

3.1 EMSMDB Server Details

The server responds to messages it receives from the client.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an
implementation maintains to participate in this protocol. The described organization is
provided to facilitate the explanation of how the protocol behaves. This document does not
mandate that implementations adhere to this model as long as their external behavior s
consistent with that described in this document.

Some methods on this interface require CXH information to be stored on theserver and used
across multiple interface calls for a long duration of time. For these methéd calls, this ptetocol
is stateful. The server must store this Session Context information and provide a8 CXHto the
client to make subsequent interface calls using this same Session Context information.

The server MUST keep a list of all active sessions and their agsociated SessiomContext
information. Each Session Context must be identified by adCXH. Once a'Session Context has
been established, a client can access messaging resources through this Session’Context. The
server MUST keep track of all open resources or any'state information specific to the session
on the Session Context. This can include but is not limited to resourees, such as folders,
messages, tables, attachments, streams, associdted Asynchronous Context Handle (ACXH)
and notification callbacks.

The server MUST isolate all resources associated with oneSession Context from all other
Session Contexts on the server. Ac€ess to resources,on one Session Context MUST NOT be
allowed using a CXH of another SessiomContext.

When the CXH is'destroyed orthe client connection lost, the Session Context and all Session
Context information MUST be destroyed, all open resources MUST be closed, and all server
objects associated with the Session Context MUST be released.

3.1.2 Timers

None.

3.1.3 " Initialization

The serverMUST first register the different protocol sequences that the server will allow
clients to communicate over. This is done by calling RPC function RpcServerUseProtseqEp.
Sée [MS-RPCE] for additional information about this function and protocol sequences. The
supported protocol sequences are specified in section 2.1. Please note some protocol
sequences use named endpoints which are also specified in section 2.1.

27 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

The server then MUST register the different authentication methods allowed on the
EMSMDB interface. This is done by calling RPC function RpcServerRegisterAuthInfo. See
[MS-RPCE] for more information about this function and authentication methods.

The server then MUST start listening for RPC calls by calling RPC function RpcServerListen.
See [MS-RPCE] for more information about this function.

The server then MUST register the EMSMDB interface. This is done by calling RPC function
RpcServerRegisterIfEx. See [MS-RPCE] for more information about this function.

The last step is to register the EMSMDB interface to all the registered binding h
previously in calls to RpcServerUseProtseq or RpcServerUseProtseqEp. This i
acquiring all the binding handle information through RPC function RpcS
and then calling RPC function RpcEpRegister with the binding inform:
for more information about these functions.

3.1.4 Message Processing Events and Sequencing R
This protocol MUST indicate to the RPC runtim
consistency check at target level 5.0, as specifi

In the table below, the term “Reserved” means tha client
opnum.

This interface includes the following metho

Method

OpnumOReserved ‘

Closes a Session Context with the server. The
Session Context is destroyed and all associated
server state, objects, and resources associated
with the Session Context are released. The
method requires an active Session Context
Handle returned from EcDoConnectEx.

EcDoDisconnect

Reserved.

Reserved.

Registers a callback address with the server for
a Session Context. The callback address is
used to notify the client of a pending event on
the server. The method requires an active
Session Context Handle returned from
EcDoConnectEx.

28 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Method Opnum Description

Opnum5Reserved 5 Reserved.

EcDummyRpc 6 This call does nothing. A client can use it to
determine if it can communicate with the
server.

Opnum?7Reserved 7 Reserved.

Opnum8Reserved 8 Reserved.

Opnum9Reserved Reserved.

EcDoConnectEx

EcDoRpcExt2

Opnum12Reserved

Opnum13Reserved ’

Binds a Session Context Handle returned in
cDoConnectEx to a new Asynchronous
Context Handle which can be used in calls to
EcDoAsyncWaitEx in interface
AsyncEMSMDB. The method requires an
active Session Context Handle returned from
EcDoConnectEx.

EcDoAsyncConnectEx

.1 Op OReserved (opnum 0)
is method is reserved and SHOULD NOT be used.

2 EcDoDisconnect (opnum 1)

The method EcDoDisconnect closes a Session Context with the server. The Session Context is
destroyed and all associated server state, objects and resources associated with the Session

29093

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Context are released. This call requires an active Session Context Handle (CXH) returned
from method EcDoConnectEx.

long stdcall EcDoDisconnect (
[in, out, ref] CXH * pcxh
)

pexh: On input contains the CXH of the Session Context the client wishes to dis;
output the server MUST clear the CXH CXH to a zero value. Setting the value
instructs the servers RPC layer to destroy the RPC context handle.

Error Values: If the method succeeds, the return value is 0. If the met
value is an implementation specific error code.

Exceptions Thrown: No exceptions are thrown beyond thos¢ thro
protocol [MS-RPCE]. ‘

3.1.4.3 Opnum2Reserved (opnum 2)
This method is reserved and SHOULD NOT

3.1.4.4 Opnum3Reserved (opn
This method is reserved and SHOU

4)

is used'to notify the client of pending events on the
ion Context Handle returned from method

address and the opaque context data in the Session
ants to notify the client of pending events, it should send a

ng stdcall EcRRegisterPushNotification(
in, out, ref] CXH * pcxh,
[in] unsigned long iRpc,
[in, size is(cbContext)]Junsigned char rgbContext[],
300193

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

[in] unsigned short cbContext,
[in] unsigned long grbitAdviseBits,
[in, size is(cbCallbackAddress)] unsigned char rgbCallbackAddress[],

[in] unsigned short cbCallbackAddress,

[out] unsigned long *hNotification

);

calling EcDoConnectEx. The server uses the Session Context Handle to identi
Context to use for this call. On output the server MUST return the same Sessi
Handle on success.

The server can destroy the Session Context Handle by returning a zero
Handle. The server might wish to destroy the Session Context
reasons:

1. The Session Context Handle passed in i‘valid.
2. Attempting to access a mailbox that is in the

iRpc: The server MUST completely ignore
0x00000000.

; parameter contains the callback address for the server to use to
ient of a pending event. The size of this data is in the parameter

data contained in this parameter follows the format of a sockaddr structure. See
ockaddr] informative reference for further information.

erver should support the address families AF_INET and AF_INET®6 for a callback
address corresponding to the protocol sequence types specified in section 2.1.

31093

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

If an address family is requested which is not supported, the server MUST return error code
eclnvalidParam. If the address family is supported, but the servers communications stack does
not support the address type the server MUST return error code ecNotSupported.

cbCallbackAddress: This parameter contains the length of the callback address in parameter
rgbCallbackAddress. The size of this parameter depends on the address family being used. If
this size does not correspond to the sockaddr size based on address family, the server MUST
return error code ecInvalidParam.

hNotification: If the call completes successfully, this output parameter will contai
to the notification callback on the server.

Error Codes: If the method succeeds, the return value is 0. If the metho
error codes are returned. Additional implementation specific error cod

Name Value Meaning

ecInvalidParam 0x80070057 A

ecNotSupported 0x80040102

ecTooBig

[in] handle t hBinding

hBinding: A valid RPC binding handle.

32093

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Error Codes: The function MUST always succeed and return 0.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC
protocol [MS-RPCE].

3.1.4.8 Opnum7Reserved (opnum 7)

This method is reserved and SHOULD NOT be used.

3.1.4.9 Opnum8Reserved (opnum 8)
This method is reserved and SHOULD NOT be used.

3.14.10 Opnum9Reserved (opnum 9)
This method is reserved and SHOULD NOT be used.

3.14.11 EcDoConnectEx (opnum 10)

The EcDoConnectEx method establishes a new Session 1 . The Session
Context is persisted on the server until the client'disconnect ect. This
method returns a Session Context Handle (CXH) to ient in subsequent calls.

long _ stdcall EcDoConnectEx (
[in] handle t hBinding,

[out, ref] CXH * pcxh,
[in, string] uns&

[in]

[in]
[in]
[in]

[in]

[in

signed short usFCanConvertCodePages,
igned long * pcmsPollsMax,
ned long * pcRetry,
unsigned long * pcmsRetryDelay,
unsigned short * picxr,
string] unsigned char **szDNPrefix,

[out, string] unsigned char **szDisplayName,

330193

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

[in] unsigned short rgwClientVersion[3],
[out] unsigned short rgwServerVersion[3],
[out] unsigned short rgwBestVersion[3],

[in, out] unsigned long * pulTimeStamp,

[in, size is(cbAuxIn)] unsigned char rgbAuxIn[],
[in] unsigned long cbAuxIn,
[out, length is(*pcbAuxOut), size is(*pcbAuxOut)] unsigned char
rgbAuxOut[],
[in, out, range(0x0, 0x1008)] unsigned long *pcbAuxOut
)i
S text

hBinding: A valid RPC binding handle.

pexh: On success the server MUST return a unique value to b
Handle (CXH). This unique value serves as the CXH for t ent.
On failure the server MUST return a zero value as the CXH.
szUserDN: User’s distinguished name.

0 .

ulFlags: For normal client calls this value

Value ‘

0x00000000

connection.

0x00000001 inistrator privilege requested for connection.

ulus is a client derived 32-bit hash value of the distinguished
and can be used by the server to decide which public folder
g public folder information when more than one replica of a folder
ash can be used to distribute client access across replicas in a deterministic way

imit: This field is reserved. A client MUST pass a value of 0x00000000.

pid: The code page in which text data should be sent if Unicode format is not requested by
ient on subsequent calls using this Session Context.

ulLcidString: The locale ID for everything other than sorting.

34093

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

ulLcidSort: The local ID for sorting.

ullexrLink: This value is used to link the Session Context created by this call with an existing
Session Context on the server. If no session linking is requested, this value will be
OxFFFFFFFF. To link to an existing Session Context, this value should be the session index
value returned in field piCxr from a previous EcDoConnectEx call. In addition to passing the
session index, the value in pul TimeStamp will be returned in the pulTimeStamp field from the
previous EcDoConnectEx call. These two values MUST be used by the server to identify an
active session with the same session index and session creation time stamp. If found, the
server MUST link the Session Context created by this call with the one found.

A server allows Session Context linking for the following reasons:

1. To consume a single CAL (Client Access License) for all the connections made from
a single client machine. This gives a client the ability to open multiplé independen?”
connections using more than one Session Context on thes@fver, but'be seen to the
server as only consuming a single CAL.

2. To get pending notification informationdor other sessions on the sameclient machine.
See RopPending in [MS-OXCNOTIF] for mere informatien.

Note that the ullcxrLink parameter is defined as a 32-bityvalue. Other than passing
OxFFFFFFFF for no Session Context linking, the server SHOULD only use the low-order 16-
bits as the session index. This value SHOULD be the valueteturned in piCxr from a previous
EcDoConnectEx call whieh is the $ession index and\defined as a 16-bit value.

usFCanConvertCodePages: The client MUST pass a value of value 0x01.

pemsPollsMax: The'server returns the number of milliseconds a client should wait between
polling the server forevent informationalf the client or server does not support making
asynchronous RPC calls for notifications (see EcDoAsyncWaitEx), or the client is unable to
receive notifications vid UDP datagrams (see EcRRegisterPushNotifications), the client can
poll the serverto\detérmine if any events are pending for the client. See [MS-OXNOTIF] for
more information on Notifications.

pcRetry: The server returns the number of times a client should retry future RPC calls using
the CXH retutned in this call. This is for client RPC calls that fail with RPC status code

RPE€ S SERVER TOO BUSY. This is a suggested retry count for the client and SHOULD
NOT be enforced by the server.

pemsRetryDelay: The server returns the number of milliseconds a client should wait before
retrying a failed RPC call. If any future RPC call to the server using the CXH returned in this
call fails with RPC status code RPC_S SERVER TOO BUSY, it should wait the number of
milliseconds specified in this output parameter before retrying the call. The number of times a

35093

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

client should retry is returned in parameter pcRetry. This is a suggested delay for the client and
SHOULD NOT be enforced by the server.

piCxr: The server returns a session index value associated with the CXH returned from this
call. This value in conjunction with the session creation time stamp value returned in
pulTimeStamp will be passed to a subsequent EcDoConnectEx call, if the client wishes to linkg
two Session Contexts. The server MUST NOT assign two active Session Contexts the same
session index value. The server is free to return any 16-bit value for the session index.

The server MUST also use the session index when returning a RopPending responée
command on calls to EcDoRpcExt2 to tell the client which Session Context hasfpending
notifications. If Session Contexts are linked, a RopPending can be returned for.any linked
Session Context. See [MS-OXCROPS] and [MS-OXCNOTIF] for morednformation on
RopPending. .

szDNPrefix: The server returns the server’s distinguished name:
szDisplayName: The server returns the server’s display name.

rgwClientVersion: The client passes the client protoeol version the server should use to
determine what protocol functionality the client suppeits, For more information about how
version numbers are interpreted from the wire daté@psee section 3.1.9:

rgwServerVersion: The server returns thesérver protocol version the client should use to
determine what protocol functionality the setver supports. For more information about how
version numbers are interpreted from, the wire data, see section 3.1.9.

rgwBestVersion: The servergeturns the minimum client protocol version the server supports.
This information ig'aseful if the EcDoComneetEx call fails with return code
ecVersionMismatch. On successthe,server SHOULD return the value passed in
rgwClientVersion by the €lient. There'is no client protocol version negotiation the server can
do. The server canf@ithetreturn the minimum client protocol version required to access the
server and fail the call with eeVersionMismatch, or the server can allow the client and return
the value passed by the clientqdn tgwClientVersion. It is up to the server implementation to set
the minithiim client protocol version supported by the server.

pulTimeStamp: On'input, this parameter and parameter ullcxrLink are used for linking the
Session Context created by this call with an existing Session Context. If the ullcxrLink
parameter 1S nobOxFFFFFFFF, the client MUST pass in the pul TimeStamp value returned
frefnthe serveron a previous call to EcDoConnectEx (see ullcxrLink and piCxr parameters
for additional details). If the server supports Session Context linking, the server should verify
there is a Session Context state with the unique identifier ullcxrLink and it has a creation time
stamp equal to the value passed in this parameter. If so, the server MUST link the Session
Context created by this call with the one found. If no such Session Context state is found, the
server SHOULD NOT fail the EcDoConnectEx call, but simply not do linking.

360193

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

On output, the server needs to return a time stamp in which the new Session Context was
created. The server should save the Session Context creation time stamp within the Session
Context state for later use if a client attempts to do Session Context linking.

rgbAuxIn This parameter contains an auxiliary payload buffer. The auxiliary payload buffer
is prefixed by an RPC_HEADER EXT structure. Information stored in this header determine
how to interpret the data following the header. The length of the auxiliary payload buffer
including the RPC_HEADER EXT header is contained in parameter cbAuxIn.

buffer is larger than 0x00001008 bytes in size.

rgbAuxOut: On output, the server can return auxiliary paylo
must include a RPC_HEADER EXT header before the a

pebAuxQut: On input, this parameter contai
The server MUST fail with error code e

On output this parameter contains t ta to be returned in the rgbAuxOut buffer
Error Values: If the met?od ucceed e is 0. If the method fails, the return

value is an imple i or one of the following protocol defined error
codes:

370f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Name

Value

Meaning

ecRpcAuthentication

0x000004B6

The szUserDN parameter does not reference a
user or references a guest user or a built-in user.

ecNotEncrypted

0x00000970

The server is configured to require encryption
and the binding handle, hBinding, authentication
is not set with

RPC C AUTHN_LEVEL PKT P
For more information about setting
authentication and authorization, s€e
RpcBindingSetAuthInfoEx. The
attempt the call again wit
which is encrypted.

ecClientVerDisallowed

0x000004DF

The server require

ecLoginFailure

0x80040111

rver is exiting or is about to exit.

ecLoginPerm

The connection is requested for administrative
cess, but the authentication context associated
with the binding handle does not have enough
privilege.

The client protocol version is below the
minimum required by the server.

0x000004E1

The server requires the client to be running in
cache mode. See section 3.1.9 for which client
versions understand this error code.

0x000004E0

The server requires the client to not be
connected via RPC/HTTP. See section 3.1.9 for
which client versions understand this error code.

tocolDisabled

0x000007D8

The server disallows the user to access the
server via this protocol interface. This could be
done if the user is only capable of accessing

[MS-OXCRPC] - v0.1
Wire Format Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

38093

http://msdn2.microsoft.com/en-us/library/aa375608.aspx

Name Value Meaning

their mailbox information through a different
means (for example, webmail, POP, IMAP, and
so on). See section 3.1.9 for which client
versions understand this error code.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underly:
protocol [MS-RPCE].

3.14.12 EcDoRpcExt2 (opnum 11)

The method EcDoRpcExt2 passes generic remote operation (ROP) co
for processing within a Session Context. Each call can contain multipl
server returns the results of each ROP command to the client.
Session Context Handle (CXH) returned from method EcDo ec

\ 4

long stdcall EcDoORpcEXt2 (

[in, out, ref] CXH * pcxh,

[in, out] unsigned long *pulFlag
[in, size is(cbIn)] unsigned

[in] unsigned long cblIn,

[out, leng

g EcDoConnectEx. The server uses the Session Context Handle to identify the Session
ontext to use for this call. On output, the server MUST return the same Session Context
andle on success.

39093

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

The server can destroy the Session Context Handle by returning a zero Session Context
Handle. The server might wish to destroy the Session Context Handle for the following
reasons:

1. Determines the ROP request payload in the rgbIn buffer is malformed or length
parameters are invalid.

2. The Session Context Handle passed in is invalid.
3. Attempting to access a mailbox that is in the process of being moved.

pulFlags: On input, this parameter contains flags which tell the server how to b
rgbOut parameter.

Name Value Meaning

NoCompression 0x00000001 T&fer\/er

NoXorMagic 0x00000002
rgbOut) or auxiliary payload
flag is absent, server SHOULD

to use these flags.

0x00000000. The meaning of the output flags are reserved

an RPC_HEADER EXT header. Information stored in this header
ow to interpret the data following the header. See section 3.1.7 for further

how to access the embedded ROP request payload. The length of the ROP
cluding the RPC_HEADER EXT header is contained in parameter cbln.

or more information on ROP bufters, see [MS-OXCROPS].

In>On input, this parameter contains the length of the ROP request payload passed in the
rgbln parameter. The server MUST fail with error code ecRpcFormat if the request buffer is
larger than 0x00008008 bytes in size. The server MUST fail with error code ecRpcFormat if

400f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

the request buffer is smaller than 0x00000008 bytes in size. See the [MS-OXCROPS]
normative reference for further details.

rgbOut: On success, this buffer contains the ROP response payload. Like the ROP request
payload, the ROP response payload is also prefixed by a RPC_ HEADER EXT header. See
section 3.1.7 for further information on how to format the ROP response payload. The size of
the ROP response payload plus the RPC_ HEADER EXT header is returned in pcbOut.

For more information on ROP buffers, see [MS-OXCROPS].

pcebOut: On input, this parameter contains the maximum size of the rgbOut buffer. The server
MUST fail with error code ecRpcFormat if the value in pcbOut on input is less than
0x00008008. The server MUST fail with error code ecRpcFormat if the yaluein pcbOut on
input is larger than 0x00040000. .

On output, this parameter contains the size of the ROP response payload in¢luding the size of
the RPC_HEADER EXT header in the rgbOut parameter. Thé servet SHOULD refurn
0x00000000 on failure as there is no ROP response payloads, The client SHOULD ignore any
data returned on failure.

rgbAuxIn: This parameter contains an auxiliary paylead buffer. The,auxiliary payload buffer
is prefixed by an RPC_HEADER EXT structuréInformation stored:in this header determines
how to interpret the data following the headef. The length of the auxiliary payload buffer
including the RPC_HEADER EXT headenis contained in parameter cbAuxIn.

See section 3.1.7 for further information on how te,access the embedded auxiliary payload
buffer. See section 3.1.8@0r further mfosmation on how to interpret the auxiliary payload data.

cbAuxIn: On inputjthis parameter contains the length of the auxiliary payload buffer passed
in the rgbAuxIn parameter. The server MUST fail with error code ecRpcFormat if the request
buffer is larger than 0x00001008 bytesiin size.

rgbAuxQut: Qn output, the server can return auxiliary payload data to the client. The server
must include a RPC_HEADER“EXT header before the auxiliary payload data.

See section 3.1.7fonfurtheginformation on how to access the embedded auxiliary payload
buffer: See section 3: 1.8 for further information on how to interpret the auxiliary payload data.

pcbAuxOut: On input, this parameter contains the maximum length of the rgbAuxOut buffer.
The server MUST fail with error code ecRpcFormat if this value is larger than 0x00001008.

On output, this parameter contains the size of the data to be returned in the rgbAuxOut buffer.

pulTransTime: On output, the server should store the number of milliseconds the call took to
execute. This is the total elapsed time from when the call is dispatched on the server to the
point in which the server returns the call. This is diagnostic information the client can use to

41 0f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

determine the cause of a slow response time from the server. The client can monitor the total
elapsed time across the RPC function call and using this output parameter can determine if
time was spent transmitting the request/response on the network on processing time on the
server.

Error Values: If the method succeeds, the return value is 0. If the method fails, the following
error codes are returned. Additional implementation specific error codes could be returned.

Name Value Meaning

ecRpcFormat 0x000004B6 The format of the request wa
invalid. This is a generic ¢
something about the req
length or content wz

Exceptions Thrown: No exceptions are throw1‘y0nd tho
protocol [MS-RPCE].

3.14.13 Opnum12Reserved (op
This method is reserved and SHOULD

3.14.14 Opnuml13Rese
This method is reserved’d SHOU

ed from method EcDoConnectEx.

ation handling. See [MS-OXCNOTIF] for additional
otifications.

[in] CXH cxh,
[out, ref] ACXH * pacxh

42 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

cxh: Client MUST pass a valid CXH which was created by calling EcDoConnectEx. The
server uses the CXH to identify the Session Context to use for this call.

pacxh: On success, the server returns an Asynchronous Context Handle which is associated
with the Session Context passed in parameter cxh. This Asynchronous Context Handle can be
used to make a call to EcDoAsyncWaitEx on interface AsyncEMSMDB.

Error Values: If the method succeeds, the return value is 0. If the method fails, the following
error codes are returned. Additional implementation specific error codes could be re

Name Value Meaning

ecRejected 0x000007EE | Server has asynchronous
disabled. Client sho i
notifications or
EcRRegisterPu:

Exceptions Thrown: No exceptions are thrown bey by the underlying RPC
protocol [MS-RPCE].

3.1.5 Timer Events

None

3.1.6 Other Local Event

None.

Interface methg nec cDoRpcExt2 contain request and response bufters
¢ ‘ hanism where the payload is preceded by a header. The
ine whether or not the payload has been compressed,

43093

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

3.1.7.1 Extended Buffer Format

See definition of [RPC_HEADER EXT] for further information on the structure and
individual fields.

The client or server MAY choose not to compress the payload if the payload is small. The
client or server MAY choose to not obfuscate the payload if the payload has already been
compressed. The client or server MAY choose to not obfuscate the payload if the client is
connected using RPC layer encryption.

The extended buffer is used in both the EcDoConnectEx and EcDoRpcExt2 for
different fields. The information below describes how the extended buffer is us
different fields on each method.

3.1.7.1.1 EcDoConnectEx

3.1.71.1.1 rgbAuxIn
The input buffer rgbAuxIn has the following format:

RPC_HEADER_EXT Payload

If the Compressed flag i‘esent in content of the payload MUST be
compressed by the client an ompressed by the server before it can be

s field, the content of the payload MUST be
ST be reverted by the server before it can be interpreted. See
ation on how to obfuscate and revert obfuscated payload

obfuscated by t
section 3.1.7.3

formation that can be passed from the client to the server. See
or more information on how to interpret this data.

e output buffer rgbAuxOut has the following format:

RPC_HEADER_EXT Payload

44.0f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

The header MUST contain the Last flag in the Flags field.

If the Compressed flag is present in the Flags field, the content of the payload MUST be
compressed by the server and MUST be uncompressed by the client before it can be
interpreted. See section 3.1.7.2 for additional information on how to compress and
uncompress payload data.

If the XorMagic flag is present in the Flags field, the content of the payload MUST b¢&
obfuscated by the server and MUST be reverted by the client before it can be interpreted. Sec
section 3.1.7.3 for additional information on how to obfuscate and revert obfuscatéd payload
data.

The payload is auxiliary information that can be passed from the server to the elient, Sec N
section 3.1.8 for more information on how to interpret this data.

3.1.7.1.2 EcDoRpcExt2

The flags passed to the server in field pulFlags by the clienttéquest that the sésver compress or
obfuscate the response data returned in field rgbOut and rgbAuxOut. If the client requests no
compression or no obfuscation through the flags NoCompression or NoXorMagic, the server
MUST honor the client request. If the client reqiests,comptession or‘obfuscation through the
absence of either flags NoCompression or NoXorMagie, the server SHOULD honor the client
request. The client MUST NOT assume aresponse willicompressed or obfuscated if requested
and should have the ability to handle data which,is not compressed or not obfuscated.

3.1.7.1.2.1 rgbln
The input buffer rgbln has the fellowing fofmat:

RPC_HEADER_EXT Payload

The header MUST contain the Last flag in the Flags field.

[f'the Compressed flag 1s present in the Flags field, the content of the payload MUST be
compressed by the client and MUST be uncompressed by the server before it can be
interpreted. See section 3.1.7.2 for additional information on how to compress and
uficompress payload data.

Ifthe XorMagic flag is present in the Flags field, the content of the payload MUST be
obfuscated by the client and MUST be reverted by the server before it can be interpreted. See
section 3.1.7.3 for additional information on how to obfuscate and revert obfuscated payload
data.

450f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

The payload is remote operation (ROP) request information that can be passed from the client
to the server. See [MS-OXCROPS] for additional information on how to interpret this data.

3.1.7.1.2.2 rgbOut
The output buffer rgbOut has the following format:

RPC_HEADER _EXT | Payload | RPC_HEADER EXT | Payload

header MUST contain the Last flag in the Flags field.

If the Compressed flag is present in the Flags %
header MUST be compressed by the server an

it can be interpreted. See section 3.1.7.2 for additio
uncompress payload data.

e payload following the
erted by the client before it can

If the XorMagic flag is present in the Flags
header MUST be obfuscated by the se
be interpreted. See section 3.1.7.3 for

put b bAuxIn has the following format:

Payload

46 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

The header MUST contain the Last flag in the Flags field.

If the Compressed flag is present in the Flags field, the content of the payload MUST be
compressed by the client and MUST be uncompressed by the server before it can be
interpreted. See section 3.1.7.2 for additional information on how to compress and
uncompress payload data.

If the XorMagic flag is present in the Flags field, the content of the payload MUST be
obfuscated by the client and MUST be reverted by the server before it can be interpr:
section 3.1.7.3 for additional information on how to obfuscate and revert obfuscat y
data.

The payload is auxiliary information that can be passed from the client t
section 3.1.8 for more information on how to interpret this data.

3.1.71.24 rgbAuxOut

The output buffer rgbAuxOut has the following‘mat:

RPC_HEADER_EXT Payload

If the Compressed ﬂag is present in th , the content of the payload MUST be
pressed by the client before it can be
ormation on how to compress and

section . 3 formation on how to obfuscate and revert obfuscated payload
data.

1.7.2 Compression Algorithm

ased on flags that are passed in RPC_ HEADER EXT header of the extended buffer, the
ad is compressed or decompressed by the server and client by using the LZ77
pression algorithm and the DIRECT?2 encoding algorithm.

47 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

This section describes the compression algorithm LZ77 and the basic encoding algorithm
DIRECT?2 that are used by the Office Exchange Protocol.

3.1.7.2.1 LZ77 Compression Algorithm

The compression algorithm is used to analyze input data and determine how to reduce the size
of that input data by replacing redundant information with metadata. Sections of the data that
are identical to sections of the data that have been encoded are replaced by small metadata that
indicates how to expand those sections again. The encoding algorithm is used to take
combination of data and metadata and serialize it into a stream of bytes that can lat;
decoded and decompressed.

3.1.7.2.1.1 Compression Algorithm Terminology

The following terms are associated with the compression algorithm.
Input stream: The sequence of bytes to be compressed.

Byte: The basic data element in the input stream.

Coding position: The position of the byte in the input stream is current

(the beginning of the lookahead bufter).

eing coded

Lookahead buffer: The byte sequence fro
stream.

ion to the end of the input

Pointer: Points to in the window (referred to as "B" in the example
later in this section i (referred to as "L" in the example later in this
section).

48 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

To use the LZ77 compression algorithm

L. Set the coding position to the
beginning of the input stream.

2. Find the longest match in the window
for the lookahead buffer.

3. Output the P,C pair, where P is the
pointer to the match in the window, and C is
the first byte in the lookahead buffer that
does not match.

4. If the lookahead buffer is not empty,
move the coding position (and the window)
L+1 bytes forward.

5. Return to step 2.

3.1.7.2.1.3 Compression Process ‘

The compression algorithm searches the window fo with the beginning of
the lookahead buffer and then outputs a pointe ven a 1-byte match
may not be found, the output cannot contain . compression algorithm solves
this problem by outputting after the poin kahead buffer after the
match. If no match is found, the algori ter and the byte at the coding
position.

Step: Indicates the number of the encoding step. A step in the table finishes every time that
encoding algorithm makes an output. With the compression algorithm, this process
s in each pass through step 3.

Pos: Indicates the coding position. The first byte in the input stream has the coding position 1.

49.0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Match: Shows the longest match found in the window.
Byte: Shows the first byte in the lookahead buffer after the match.

Output: Presents the output in the format (B,L)C, where:(B,L) is the pointer (P) to the match.
This gives the following instructions to the decoder: Go back B bytes in the window and copy,
L bytes to the output. C is the explicit byte.

Note: One or more pointers might be included before the explicit byte that is shown 1
Byte column.

Compression process output

Step Pos Match

1. 1 -

2. 2 A

3. 4

4. 5

5. 7
The result of compression, conceptual —that is, a series of bytes and
optional metadata that indicates w is preceded by some sequence of bytes that

is already in the output. ‘

encoded by two bytes of metadata (offset and
es equals or exceeds the cost of outputting the bytes
rotocol only considers sequences of bytes to be a

e key to decoding the compressed data is recognizing what bytes are metadata and what
tes are data. The decoder must be able to identify the presence of metadata in the

provide this information to the decoder.

50093

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

This section describes the bitmasks that enable the decoder to distinguish data from metadata.
It also describes the process of encoding the metadata.

3.1.7.2.2.1 Bitmask

To distinguish data from metadata in the compressed byte stream, the data stream begins with
a 4-byte bitmask that indicates to the decoder whether the next byte to be processed is data
("0" value in the bit), or if the next byte (or series of bytes) is metadata ("1" value in the bit). If
a "0" bit is encountered, the next byte in the input stream is the next byte in the output stream.
If a "1" bit is encountered, the next byte or series of bytes is metadata that must be interpreted
further.

For example, a bitmask of 0x01000000 indicates that the first seven bytes are'@etual data,
followed by encoded metadata that starts at the eighth byte. The metadatéa is followed by24
additional bytes of data. 7S

When the bitmask has been consumed, the next four bytes in thé inputistream are another
bitmask.

3.1.7.2.2.2 Encoding Metadata

In the output stream, actual data bytes are stored unchanged. Bitmasks are stored periodically
to indicate whether the next byte or bytes are dataser metadata. If thenext bit in the bitmask is
"1," the next set of bytes in the input data strea@m 1s metadata. This metadata contains an offset
back to the start of the data to be copied to,the output stream, and the length of the data to be
copied.

To represent the metadatéas efficientlyias possible, the encoding of that metadata is not fixed
in length. The encoding algorithm supperts the largest possible floating compression window
to increase the probability of finding a large match; the larger the window, the greater the
number of bytes thatare needed fonthe offset. The encoding algorithm also supports the
longest possible match;the longer the match length, the greater the number of bytes that are
needed to encodedhe length.

3.1.7.2.2.3 Metadata©Offset

The Office’Exchatige Protocol assumes the metadata is two bytes in length, where the high-
orderd3 bits are afirsteomiplement of the offset, and the low-order three bits are the length.
The offset is only encoded with those 13 bits; this value cannot be extended and defines the
maximum size of the compression floating window. For example, the metadata 0x0018 is
conyerted into the offset b'000000000011', and the length b'000'". In integers, the offset is '-4',
computed by inverting the offset bits, treating the result as a 2s complement, and converting to
integer.

3.1.7.2.2.4 Match Length

Unlike the metadata offset, the match length is extensible. If the length is less than 10 bytes, it
is encoded in the three low-order bits of the 2-byte metadata. Although three bits seems to

510f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

allow for a maximum length of six (the value b'111' is reserved), because the minimum match
is three bytes, these three bits actually allow for the expression of lengths from three to nine.
The match length goes from L =b'000' + 3 bytes, to L =b'110" + 3 bytes. Because smaller
lengths are much more common than the larger lengths, the algorithm tries to optimize for
smaller lengths. To encode a length between three and nine, we use the three bits that are "in-
line" in the 2-byte metadata.

If the length of the match is greater than nine bytes, an initial bit pattern of b'111' is put in the
three bits. This does not signify a length of 10 bytes, but instead a length that is greatef than
10, which is included in the high-order nibble of the following byte.

Every other time that the length is greater than nine, an additional byte follows,theinitial 2-
byte metadata. The first time that the additional byte is included, the highordermnibble is,used
as the additive length. The next nibble is "reserved" for the next metadata instanée when the
length is greater than nine. Therefore, the first time that the decoder encountefs a length Fhat is
greater than nine, it reads the next byte from the data stream anddhe high-order nibble is
extracted and used to compute length for this metadata instange. The low-ordennibble is
remembered and used the next time that the decoder encoufiters a metadatalength that is
greater than nine. The third time that a length that'is greater thamnine is encountered, another
extra byte is added after the 2-byte metadata, with thé€ high-order nibble used for this length
and the low-order nibble reserved for the fourth length'that is greater than nine, and so on.

If the nibble from this "shared" byte is all 1s (for example, BT PL1"), another byte is added after
the shared byte to hold more length. In thi§ fanner, a length of'24 is encoded as follows:

b'111" (in the threg bits in th@original two bytes of metadata), plus
b'1110' (in the nibbledf the 'shared'byte of extended length)
b'111"' means1Obytes plus b1 110", which is 14, which results in a total of 24.

If the length is mefe thain24, the next byte is also used in the length calculation. In this
manner, a length of 25 is encoded as follows:

bihl 1' (in thie three bifs in the original two bytes of metadata), plus
b'L111' (in themibble of the 'shared' byte of extended length), plus
b'00000000' (in the next byte)

This scheme is good for lengths of up to 278 (a length of 10 in the three bits in the original two
bytes of metadata, plus a length of 15 in the nibble of the 'shared' byte of extended length, plus
a length of up to 254 in the extra byte).

A "full" (all b'l") bit pattern (b'111',b'1111", and b'11111111") means that there is more length
in the following two bytes.

520f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

The final two bytes of length differ from the length information that comes earlier in the
metadata. For lengths that are equal to 280 or greater, the length is calculated only from these
last two bytes, and is not added to the previous length bits. The value in the last two bytes, a
16-bit integer, is three less than the metadata length. These last two bytes allow for a match
length of up to 32,768 bytes + 3 bytes (the minimum match length).

The following table summarizes the length representation in metadata.

Note: Length is computed from the bits that are included in the metadata plus the mi

match length of three. §
o \Q

[MS-OXCRPC] - v0.1
‘Wire Format Protocol Specification

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

53093

Length representation in metadata

Match Length

Length Bits in the Metadata

24

b'111" (three bits in the original two bytes of metadata)
+

b'1110' (in the high-order nibble of the shared byte)

25

b'111' (three bits in the original two bytes of metadata)
+

b'1111" (in the high-order nibble of the shared byte)
+

b'00000000' (in the next byte)

26

b'111' (three bits in the original two bytes of metada
+

b'1111" (in the high-order nibble of the share
+

b'00000001" (in the next byte)

279

b'111' (three bits in the on'gingtw bytes 0
+

b'1111" (in the high-order ni
+

b'11111110' (in the ne

280

o bytes of metadata)
the shared byte)

b'11114Gn the h
b'111 i

e high-order nibble of the shared byte)

I' (in the next byte)

OxOl 16 (in the next two bytes). This is 278 + 3 (minimum match length).
Note:

All the length is included in the final two bytes and is not additive, as were
the previous length calculations for lengths that are smaller than 280 bytes.

last bytes.

[MS-OXCRPC] - v0.1

" bit pattern in that last half word does not mean that more metadata is coming after the

54093

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

The LZ77 compression algorithm produces a well-compressed encoding for small valued
lengths, but as the length increases, the encoding becomes less well compressed. A match
length of greater than 278 bytes requires a relatively large number of bits: 3+4+8+16. This
includes three bits in the original two bytes of metadata, four bits in the nibble in the 'shared'
byte, eight bits in the next byte, and 16 bits in the final two bytes of metadata.

3.1.7.3 Obfuscation Algorithm

Obfuscation is used to obscure any easily readable messaging data being transmitted between
the client and server across the network. This is not intended as a security feature. Ifa client
wishes to have secure communications with the server it MUST use RPC-level packet
encryption.

The algorithm used to obscure data is straight-forward and simple. Every byte of the,dataxto be
obfuscated should be XORed with the value OxAS. 2’

3.1.7.4 Extended Buffer Packing

As mentioned in section 3.1.7.1.2.2, the rgbOut field of method EcDoRpeExt2 can contain
more than one extended buffer, each with an RPC HEADER _EXT header.“This concept is
called “packing”. The server has the ability to “packé” additional'tésponse data into the rgbOut
field based on whether the client has requested this funetienality through passing flag Chain in
the pulFlags field and whether the remote opefation (ROP) in the rgbIn request buffer on the
EcDoRpcExt2 method support “packing”. The ROP eommands,which support “packing” are
RopQueryRows, RopReadStream, and RopFastTransferSourceGetBuffer. See [MS-
OXCROPS] for more information about these ROP commands.

When processing ROP requests the setver MUST NOT produce more than 32 KB worth of
response data for all ROP requests. However, when the server finishes processing a
RopQueryRows, RopReadStreamyand RopFastTransferSourceGetBuffer from the rgbln
request buffer and it was'the last ROP,command in the request buffer and the client has
requested “packingthsough the Chain flag and there is residual room in the rgbOut response
buffer, the servef can add additional data to the rgbOut response buffer with its own

RPC HEADER EXTdheader,

In order(for the server to produice additional response data, the server MUST build a response
“asif” the client sent afiother request with only a RopQueryRows, RopReadStream, or
RopFastTransferSourceGetBufter. The additional response data is also limited to 32 KB in
size. The additional ROP response is placed into the rgbOut buffer following the previous
header and payload with its own RPC_HEADER EXT header. The server can then compress
ahd/or obfuscate this payload if the client requests and set the appropriate flags in the header
indicating how the payload has been altered. If there is still more residual room in the rgbOut
buffer, the server can continue producing more response data until there is not enough room in
thergbOut buffer to hold another response.

550193

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

The server MUST stop adding additional “packed” buffers to the rgbOut response buffer if the
residual size of the rgbOut response buffer is less than 8 KB for RopReadStream and
RopFastTransferSourceGetBuffer and 32 KBfor RopQueryRows. The server MUST NOT
place more than 96 individual payloads into a single rgbOut response buffer.

When adding additional response data, the server MUST alter the request to reflect what has
already been done. For example, if the client requests to read 1,000 rows in RopQueryRows
and the first payload contains 100 rows, the additional response data must be processed “as if”
the client only request 900 rows. The server MUST NOT return more data to the client than
the client originally requested.

For RopQueryRows the server MUST adjust the row count when adding additional response
data. For RopReadStream, the server MUST adjust the number of bytes 16 read when adding
additional response data. There is no specific limit for RopFastTransferSourceGétBufter, but
the server MUST stop if no more data is indicated for the fast transfer steeamd For
RopFastTransferSourceGetBuffer, the client SHOULD request the sésver réturn “asmuch”
data as possible. See [MS-OXCROPS] for additional information on how: to prepefly format
RopFastTransferSourceGetBuffer in this way.

3.1.8 Auxiliary Buffer

Methods EcDoConnectEx and EcDoRpcExt2 allew foradditional datarto travel between the
client and server. This additional data is transferredin'the auXiliary buffers of both methods.
The rgbAuxIn is for auxiliary data being sent from the'client to the server and rgbAuxOut is
for auxiliary data being sent from the sérverto the client.

Unlike the ROP requestdnd response payloads rgbln,and rgbOut, there is no request and
response nature to the auxiliagy buffers. The data sentto the server from the client in the
auxiliary input buffer is purely informationahand the server is not required to respond in the
auxiliary output bufferhThe data'sent from the server to the client is also informational which
the client might use to altex its behavior against the server.

The data being fransferred i the auxiliary buffers is divided into two different categories. The
first is client-side perfermance,mformation which is statistical information the client can keep
regardingfits commtinication with the messaging server or the directory service. Part of this
information is forwhen the€lient fails to communicate with the message server or the
directory service. The'elient can then report this information to the server the next time it
communicates. The server is free to analyze this information and provide feedback to help
diagnose any. potential networking or communications issues with the client/server messaging
netWwork infrastructure.

The second category of auxiliary information is server-to-client oriented and enables the
server to tell the client about topology characteristics of the messaging system. The client
MAY use this information to change how it interacts with the server.

560193

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

All information in the auxiliary buffer MUST be added with an AUX HEADER preceding
the actual auxiliary information. See section 2.2.2.2 for more information on the

AUX HEADER and how it’s formatted. Within the AUX HEADER header the fields
Version and Type combined determine which auxiliary block follows the header. Section
2.2.2.2 provides information on how to format the AUX HEADER header to indicate which
auxiliary block follows.

If the client or server receives an auxiliary AUX HEADER block with a version and type it
does not identify, it MUST skip over the entire block. The AUX HEADER contain;
length of the AUX HEADER plus the following auxiliary block in the field Size,

skipping the information can be done. The client or server SHOULD NOT throW'a
there is an auxiliary block it does not identify. This will allow for future expansi
auxiliary blocks without impacting legacy clients or servers.

3.1.8.1 Client Performance Monitoring

The following are sent from the client to the server in the rgbA
method EcDoConnectEx. Each of these auxiliary blocks
formatted AUX HEADER header . ‘

Sent by client to server in EcDoConnectEx:

\ 4

[MS-OXCRPC] - v0.1
Wire Format Protocol Specification

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

570f93

Block

Description

AUX_PERF_CLIENTINFO
(2.2.2.6)

Sent to the server as diagnostic information about the
client for more robust reporting of networking issues.
The client MUST assign a unique ClientID parameter
for each AUX PERF CLIENTINFO block sent to the
server. The ClientID is also used in other performance
blocks to identify which client to associate the
performance data.

AUX_PERF_PROCESSINFO
(2.2.2.8)

Sent to the server as diagnostic informatigh,about the
client process for more robust reporting of networking
issues. The client MUST assign a ufiique ProcessiD for
each AUX PERF PROCESSINFO block sentto the
server. The ProcessID is also used in other perform&ice
blocks to identify which cliéftyprocess to assogiate the
performance data.

AUX_PERF SESSIONINFO
(2.2.2.4)

Sent to thé server as diagnostic information about the
client session for more rabust reporting of networking
issues. The client MUST assign a unique SessionID for
each AUXFPERF SESSIONINFO/

AUX PERFSESSIONINFO V2 block sent to the
serves. The SessionlD is:also used in other performance
blocks tojidentify whieh client session to associate the
performance data.

[fwaiting a client, it is recommended that
AUX_PERF SESSIONINFO_V2 be used instead. A
server SHOULD still support this older session
ihformation auxiliary block.

This block can also be passed in the EcDoRpcExt2
auxiliary input buffer.

AU, PERF SESSIONINFO V2
(2.2.2.5)

Sent to the server as diagnostic information about the
client session for more robust reporting of networking
issues. The client MUST assign a unique SessionID for
each AUX PERF SESSIONINFO V2/

AUX PERF SESSIONINFO block sent to the server.
The SessionID is also used in other performance blocks
to identify which client session to associate the
performance data.

This block can also be passed in the EcDoRpcExt2

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

580193

auxiliary input buffer.

The following are sent from the client to the server in the rgbAuxIn auxiliary buffer on
method EcDoRpcExt2. Each of these auxiliary blocks MUST be preceded by a properly
formatted AUX HEADER header (2.2.2.2).

Sent by client to server in EcDoRpcExt2:

| @*\é

[MS-OXCRPC] - v0.1
Wire Format Protocol Specification

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

59093

Block

Description

AUX_PERF SESSIONINFO
(2.2.2.4)

Sent to the server as diagnostic information about the client
session for more robust reporting of networking issues. The
client MUST assign a unique SessionID for each

AUX PERF SESSIONINFO/

AUX PERF SESSIONINFO V2 block sent to the server. The
SessionID is also used in other performance blocks to 1dentify
which client session to associate the performanée,data.

If writing a client it is recommended that

AUX PERF SESSIONINFO V2beused instead. A server
SHOULD still support this oldér sessioninformation auxiliaty
block. .

This block can also befpasséd in the EcDoConnectEx auxiliary
input buffer.

AUX_PERF SESSIONINFO V2
(2.2.2.5)

Sent to.the server as diagnostic information about the client
session fordnore robust teporting of networking issues. The
client MUST assign a unique SessionID for each

AUX PERF SESSIONINFO V2/

AUX PERE SESSIONINFO block sent to the server. The
SeéssionID is alsoyused in other performance blocks to identify
whichelient session to associate the performance data.

This block €an also be passed in the EcDoConnectEx auxiliary
mput buffer.

AUX PERF SERVERINFO
(2.2.2.7)

Sent'to the server as diagnostic information about the server in
which the client is communicating with for more robust
reporting of networking issues. The client MUST assign a
unique ServerID for each AUX PERF SERVERINFO block
sent to the server. The ServerlID is also used in other
performance blocks to identify which server a client is
communicating with to associate the performance data.

AUX\ PERE. REQUESTID
(2.2.2.3)

Sent to the server as diagnostic information about a particular
request for more robust reporting of networking issues. The
client MUST assign a unique RequestID for each

AUX PERF REQUESTINFO block sent to the server. The
RequestID is also used in other performance blocks to identify
which request to associate the performance data.

This block requires an AUX PERF SESSIONINFO or

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

60 0f 93

AUX PERF SESSIONINFO V2 to have been previously sent
to the server for the SessionID field within this block.

AUX_PERF DEFMDB_SUCCESS
(2.2.2.9)

Sent to the server as diagnostic information to report a
previously successful RPC call to the messaging server.

This block requires an AUX PERF REQUESTID to have
been previously sent to the server for the RequestID field
within this block.

AUX PERF DEFGC SUCCESS
(2.2.2.10)

Sent to the server as diagnostic information to report a
previously success call to the Active Ditectory.

This block requires an AUX PERF SERVERINFO and

AUX PERF SESSIONINFQ/

AUX PERF SESSIONINFO V2 to have been previously sent
to the server for the ServerlDand 'SessiondD fields within this
block.

AUX PERF MDB SUCCESS
(2.2.2.11)

Sent to the server as'diagnostic information to report a
previouslysuecessful RPE call to the messaging server.

This block requiresian AUX PERF REQUESTID,

AUX PERF CLIENTINFO, AUX PERF SERVERINFO
and AUX PERE SESSIONINFO/

AUX_PERF SESSIONINFO V2 to have been previously sent
to the server for the RequestID, ClientID, ServerID and
SessionlD fields within this block.

If wrtting a client it is recommended that

AUX PERF MDB SUCCESS V2 be used instead. A server
SHOULD still support this older session information auxiliary
block.

AUX_PERF MDB SUCCESS V2
2.2212)

Sent to the server as diagnostic information to report a
previously successful RPC call to the messaging server.

This block requires an AUX PERF REQUESTID,

AUX PERF PROCESSINFO, AUX PERF CLIENTINFO,
AUX PERF SERVERINFO and

AUX PERF_SESSIONINFO/

AUX PERF SESSIONINFO V2 to have been previously sent
to the server for the RequestID, ProcessID, ClientID, ServerID
and SessionlID fields within this block.

AUX PERF GC SUCCESS

Sent to the server as diagnostic information to report a

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

61 0f93

(2.2.2.13)

previously success call to the Active Directory.

This block requires an AUX PERF CLIENTINFO,
AUX PERF_SERVERINFO and

AUX PERF_SESSIONINFO/

AUX PERF SESSIONINFO_V2 to have been pre
to the server for the ClientID, ServerID and Session
within this block.

If writing a client it is recommended that
AUX PERF GC SUCCESS V2 be

SHOULD still support this older sessie
block.

AUX_PERF GC SUCCESS V2
(2.2.2.14)

AUX_PERF FAILURE

(2.2.2.15)
4

V2 to have been previously sent
, ClientID, ServerID and
in this block.

block requires an AUX PERF REQUESTID,
_PERF_CLIENTINFO, AUX PERF SERVERINFO
and AUX PERF_SESSIONINFO/

AUX PERF SESSIONINFO V2 to have been previously sent
to the server for the RequestID, ClientID, ServerID and
SessionID fields within this block.

If writing a client it is recommended that

AUX PERF FAILURE V2 be used instead. A server
SHOULD still support this older session information auxiliary
block.

_PERF FAILURE V2
2.2.16)

Sent to the server as diagnostic information to report a
previously FAILED call to the messaging server or Active
Directory.

This block requires an AUX PERF REQUESTID,

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

62 of 93

AUX PERF PROCESSINFO, AUX PERF CLIENTINFO,
AUX PERF_SERVERINFO and

AUX PERF_SESSIONINFO/

AUX PERF SESSIONINFO V2 to have been previously sent
to the server for the RequestID, ProcessID, ClientID, ServerID
and SessionlID fields within this block.

3.1.8.2 Server Topology Information

The following are sent from the server to the client in the rgbAuxOut auxilia
method EcDoConnectEx. Each of these auxiliary blocks MUST be prece
formatted AUX HEADER header (2.2.2.2).

Sent by server to client in EcDoConnectEx: Q

\ 4

[MS-OXCRPC] - v0.1
Wire Format Protocol Specification

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

on
ly

63 0f 93

Block Description

AUX CLIENT CONTROL Sent to the client to request a change in client
(2.2.2.17) behavior. This is a means for the server to
dynamically change client behavior. See
section 2.2.2.17 for additional information o
what client behavior the server can adjust.

on this request.

AUX_ OSVERSIONINFO Sent to the client as infou
(2.2.2.18)

AUX_EXORGINFO
(2.2.2.19)

re if the server informs the client that

e not present or disabled. If this block is
not returned to the client, the client SHOULD
assume that Public Folders are available
within the organization.

er to the client in the rgbAuxOut auxiliary buffer on
these auxiliary blocks MUST be preceded by a properly
ader (2.2.2.2).

ver to client in EcDoRpcExt2:

640f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Block Description

AUX CLIENT CONTROL Sent to the client to request a change in client
(2.2.2.17) behavior. This is a means for the server to
dynamically change client behavior. See
section 2.2.2.17 for additional information on
what client behavior the server can adjust.
The client SHOULD alter its behavior based
on this request.

3.1.9 Version Checking

In the method EcDoConnectEXx, the client passes the client version to the servef. Tn response,
the server returns its version to the client. The server version information indicates to theclient
what functionality is supported on the server. The client version information indicates to the
server what functionality the client supports.

Sometimes the functionality represents a change in the protocel wire format.“This section
describes the following:

e How version numbers are compared.
e Specific server versions and theirassociated functionality.
e Specific client vefsions and their associated functionality.

3.1.9.1 How to€ ompares,Version Numbers

On the wire, client and Server versions numbers are passed as three WORD values. See
section 3.1.4.11 for additional informatien about EcDoConnectEx. In this method, the fields
rgwClientVersiofl, rgwSetverVersion, and rgwBestVersion are all passed as three WORD
values. However, manipulation must be performed before the numbers can be compared.

Becausefversions that are pagsed on the wire were historically represented as only three
nunbers, the version number was expressed as “XX. XXXX.XXX.” The first number
represented the product major version. The second number was the build major number. The
third numberwas the build minor number. However, this representation prevented the
inclysion of atequired fourth number, the product minor number, which is used when
shipping service packs.

Microsoft changed the versioning to be represented as “XX. XX . XXXX.XXX.” For example,
*08:0.1.0215.000” represents a specific build of Exchange 2007 with Service Pack 1 applied.
Thefirst number is the product major version. The second number is the product minor

65 of 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

version. The third number is the build major number. The fourth number is the build minor
number.

However, the version size on the wire did not change: It is still represented as three WORD
values. A scheme was devised which converts from the three WORD on-the-wire-format of
the version into a four-number version. This is referred to as version number normalization.

All versions are converted into four-number versions before any version checks are
performed. The following pseudo-code example describes a function that converts t
WORD value wire version format into a four-number format that can then be used
comparisons.

// This routine convers a three WORD version value into a no
// four WORD version value.
//

// Version[] is an array of 3 WORD values on the
// NormalizedVersion[] is an array of 4 W values

//

comparison

IF high-bit of Version[l]is se
SET NormalizedVersion i ersion([0]
SET Normaliz*rsion[of Version[O0]
SET

SET

ELSE

SET to Version[0]
to 0
to Version[1l]

to Version[2]

er the version that is being passed is in the old scheme or the new scheme. If the highest
he second WORD value on the wire is set, the version on the wire is in the new scheme.
Otherwise, it 1s interpreted as the old scheme where the product minor version is not sent.

66 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

3.1.9.2 Server Versions

The following table shows server version values that are returned to the client on the
EcDoConnectEx method call. The client can assume that the described functionality exists if
the version number that is passed in the RPC buffer is equal to or greater than the server
version number in which the functionality was added, as shown in the following table.

Server version Description

6.0.6755.0 The server supports passing the sentin
0xBABE in the BufferSize field of'a
RopFastTransferSourceGetB
See [MS-OXCROPS]

8.0.295.0

8.0.324.0

8.0.358.0

¢

cannot mix and matc
level, it MUST sug : i om previous server version levels.

67 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Client version

Description

11.0.0.0

The client supports receiving UNICODE strings for all
string properties on Recipient Row data that is returned
from the server on RopReadRecipients,
RopOpenMessage, and RopOpenEmbeddedMessage.
See [MS-OXCROPS]

11.0.0.4920

The client supports receiving ecServerBusy i
ReturnValue field of the

RopFastTransferSourceGetBuffer respo
also assumes that the BackoffTime fie

e client
e present

present.
See [MS-OXCROPS] an

12.0.0.0

12.0.3118.0

12.0.3619.0 ‘

cClientVerDisallowed. This error is returned when the
er is configured to only allow encrypted
connections and the client is attempting to connect on a
non-encrypted connection.

The client supports send optimization for Incremental
Change Synchronization using PidTagTargetEntryId.
See [MS-OXCFXICS] for more details.

The client supports “packing” of RopReadStream in
the ROP response buffer of the EcDoRpcExt2 RPC
call. The RopReadStream must be the last ROP in the
request buffer on the EcDoRpcEXxt2 call. See section
3.1.7.4 for more information on extended buffer
“packing”.

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

68 0f 93

Client version Description

12.0.4228.0 The client supports receiving RopBackoff in the ROP
response buffer of the EcDoRpcExt2 call.
See [MS-OXCROPS]

A client implementation needs to determine which level of support it will offer server sed
on this level of support, it must pass a client version corresponding to that support.
cannot mix and match functionality. In order to support functionality at one clie
level, it MUST support all functionality from previous client version levels.

3.2 EMSMDB Client Details

3.2.1 Abstract Data Model

For some functionality on the EMSMDB interface, it is requi
Context Handle (CXH) and use it on subsequentdnterface
handle.

Session
context

3.2.2 Timers

No protocol timers are required beyond thos
resiliency to network outages. For more i
RPCE].

in RPC to implement
tocols Extensions [MS-

3.2.3 Initialization <>

The client creates an RPC ¢ i emote server using the details described in
section 2.1.

Establishing a conne »\ ith the s requires authentication. The RPC binding handle

method defined.

evel 5.0, as specified in section 3 of [MS-RPCE].

etion of the RPC method, the client returns the result unmodified to the higher
od calls require an RPC context handle which is created in another method
. See information detailed in section 3overview for method dependencies.

69 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

3.2.4.1 Sending EcDoConnectEx

When issuing the interface call EcDoConnectEx, some parameters need additional client-side
consideration beyond what is stated in section 3.1.4.11. Below is a list of parameters which the
client should have specific handling:

hBinding: A valid RPC binding handle which MUST have a server name, protocol sequence
and authentication method defined. Some protocol sequences have named endpoints which
MUST be used. See section 2.1 for more information on how to create a binding handle:

pexh: On success, this field will contain the Session Context Handle (CXH). The CXH
MUST be stored on the client and used in subsequent calls on the EMSMDB interface which
require a valid CXH.

ulConMod: The connection modulus hash is determined by the client for a cofinection. How
the client determines the hash value is not important. The client SHOULD efisure that for a
particular distinguished name passed in field szUserDN, the hash*valué,should always be the
same. It is acceptable to have the same hash value for different distinguished names. The
client is free to send any 32-bit value.

cbLimit: A client MUST pass a value of 0x00000000.

ullexrLink: This value is used to link the Segsion Context eteated by this call with an existing
Session Context on the server created from a'previous.¢all to BEeDoConnectEx.

A client may want to link two Session Contexts for the following reasons:

1. To consume a single CAL (Chient, Access [igense) for all the connections made from
a single client machifieyThis gives aclient the ability to open multiple independent
connections using more than one Session Context on the server, but be seen to the
server as only ¢ohsuming a single CAL.

2. To get pénding notification information for other sessions on the same client machine.
See RopPending ih [MS-OXCNOTIF] for more information.

If a client does not wish to Tink two Session Contexts or if this is the first call to
EcDoConneetEx, the client MUST pass a value of OxFFFFFFFF.

Note that the ullexrLink parameter is defined as a 32-bit value. Other than passing
OxFFFFFFFF for no Session Context link, the client SHOULD only pass a value with the
high-order 16-bits set to zero and the low-order 16-bits MUST be the value returned in field
piCxr from a previous EcDoConnectEx call.

usFCanConvertCodePages: The client MUST pass a value of value 0x01.

70 of 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

pemsPollsMax: On success, this value is the number of milliseconds the client SHOULD
wait before polling the server for notification information. There are other more dynamic
options available to the client for receiving notifications from the server. See [MS-
OXCNOTIF] for more information on working with Notifications. The client should save this
value and associated it with the Session Context Handle (CXH).

pcRetry: On success, this value is the number of times the client SHOULD retry a subsequent
EMSMDB method call which uses the Session Context Handle (CXH) returned in field pcxh.

See section 3.2.4.3 for more information on retrying RPC calls. This value should be-€avesand

associated with the Session Context Handle (CXH).

pemsRetryDelay: On success, this value is the number of milliseconds a client should wait
before retrying a subsequent EMSMDB method call which uses the Session Context Handle
(CXH) returned in field pcxh. See section 3.2.4.3 for more information/on retryifig RPC calls.
This value should be saved and associated with the Session Context Handle (CXH).

piCxr: On success, this value is a 16-bit session index which ¢an be uséd inconjunction with
the value returned in pulTimeStamp to link two Session Cghtexts on the'server. See field
ullexrLink for more information on how to link“Session Contexts and the reason why a client
might want to.

This value should be saved and associated withithe SessioniContext Handle (CXH). It is the
session index returned in a RopPending response commandomcalls to EcDoRpcExt2. The
RopPending response command tells theelient that a Session Context on the server has
pending notifications. If a client links Session Centexts, a RopPending can be returned for any
linked Session Context. See [MS-@XCROPS] andy{MS-OXCNOTIF] for more information
on RopPending.

rgwClientVersiofi: The client MUST pass the version number of the highest client protocol
version it supports. Thisivalue will information the server of what protocol functionality the
client supports. For more information about how version numbers are interpreted from the
wire data and thefexpected client behavior, see section 3.1.9.

rgwServerVersion:On suceess, this value is the server protocol version which the client
SHOULD use to determine what protocol functionality the server supports. For more
information about'how,version numbers are interpreted from the wire data and the expected
servenbehavior, see section 3.1.9. This value should be saved and associated with the Session
Context Handle (CXH).

pulTimeStamp: If a client wishes to link the Session Context created by this call to a
previously created Session Context, the client MUST pass on input the session creation time
stamp returned in pulTimeStamp on a previous EcDoConnectEx call. If the client does not
wishyto link Session Contexts, the client SHOULD pass value 0x00000000.

71 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

On success, this value is the Session Context creation time stamp. The server should save the
Session Context creation time stamp and associate it with the Session Context Handle (CXH).

3.2.4.2 Sending EcDoRpcExt2

When issuing the interface call EcDoRpcExt2 some parameters need additional client-side
consideration beyond what is stated in section 3.1.4.12. Below is a list of parameters for which
the client SHOULD have specific handling:

pexh: The client MUST pass a valid Session Context Handle (CXH) which was created by
calling EcDoConnectEx. On output, the server might have prematurely closed theehient’s
session by clearing the Session Context Handle to zero. If the value on output is{zero, the
Session Context on the server has been destroyed.

3.2.4.3 Handling Server Too Busy .

All method calls which require a valid Session Context Handle (EXH) SHQULD be retried if
the call fails with RPC status RPC_S SERVER TOO BUSY4 The number of times the client
should retry and the amount of time the client should wait before retrying is, based on fields
pcRetry and pcmsRetryDelay returned on EcDaConnectEx:Method EcDoConnectEx is the
only method which creates a CXH, so it is a prerequisite for any method which requires a
CXH.

3.2.4.4 Handling Connection Failures

If the client’s connection to the server failsor if the server prematurely disconnects a client by
clearing the Session Context Handle (CXH) in the response'to an EMSMDB method call, the
client SHOULD clean uptany saved session stateinformation and close the Session Context
Handle (CXH) if not already set to zero. The sessions binding handle SHOULD also be
closed.

A client might chose to reconnect with the server automatically by creating a new binding
handle and calling EePeConnectEx. This will create a new Session Context on the server. It
should be noteddthat all'Server ©bjects previously opened on the server will no longer exist
and the client MUST jsSue Rop'edmmands if the client wishes to recreate or reopen the Server
Objects.

3.2:5 Timer Events

None.

3.2.6 Other Local Events

None.

3.3 »AsyncEMSMDB Server Details

The server responds to messages it receives from the client.

72 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an
implementation maintains to participate in this protocol. The described organization is
provided to facilitate the explanation of how the protocol behaves. This document does not
mandate that implementations adhere to this model as long as their external behavior is
consistent with that described in this document.

The abstract data model for this interface is the same as that for the EMSMDB interface.. See
section 3.1.1 for additional information on Session Context and Session Context Hafndles
(CXH).

Some methods on this interface require Session Context information to bestoredon the server
and used across multiple interface calls for a long duration of time. For these method calls, this
protocol is stateful. The server must store this Session Context information and provide,a ¢
Session Context Handle to the client to make subsequent interfacecalls using this same
Session Context information.

The AsyncEMSMDB uses Asynchronous Contekt Handles (ACXH) whieh are RPC context
handles. Every ACXH context handle must map to the Session Centext associated with a
CXH context handle. There SHOULD only be one ACXH context handle for a Session
Context.

All methods on the AsyncEMSMDB interface whichuse,an ACXH context handle must be
performed against the Session Contextdssociated with the ACXH context handle.

The server MUST keep atmapping between the ACXH context handle and an active Session
Context on the server. Session contexts can be created and destroyed through the EMSMDB
interface.

When the Session Context is destrayed or the client connection lost, the ACXH context handle
MUST also be destroyed.

3.3.2 Timers

None.

3.3.3 . Initialization

The server firsst MUST register the different protocol sequences the server will allow clients to
comimunicate over. This is done by calling RPC function RpcServerUseProtseqEp. See [MS-
RPCE] for additional information about this function and protocol sequences. The supported
protocol sequences are specified in section 2.1. Please note some protocol sequences use
named endpoints which are also specified in section 2.1.

73 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

The server then MUST register the different authentication methods allowed on the
AsyncEMSMDB interface. This is done by calling RPC function RpcServerRegisterAuthInfo.
See [MS-RPCE] for more information about this function and authentication methods.

The server then MUST start listening for RPC calls by calling RPC function RpcServerListen.
See [MS-RPCE] for more information about this function.

The server then MUST start register the AsyncEMSMDB interface. This is done by calling
RPC function RpcServerRegisterIfEx. See [MS-RPCE] for more information about
function.

The last step is to register the AsyncEMSMDB interface to all the registered bi
created previously in calls to RpcServerUseProtseq or RpcServerUseProtséq

by first acquiring all the binding handle information through RPC funct
RpcServerlngBindings and then calling RPC function RchpReglster
information. See [MS-RPCE] for more information about these

Method

EcDoAsyncWaitEx ‘
e until there are pending events on the
Session Context. The method requires an
ctive Asynchronous Context Handle returned
from EcDoAsyncConnectEx on interface
EMSMDB.

aitEx is an asynchronous call that the server will not complete until
ing events on the Session Context up to a five minute duration. If no events are
n'five minutes, the server will return the call and will not set the

1cat10nPen ing flag in the pulFlagsOut field. If an event is pending, the server will
omplete the call immediately and return the NotificationPending flag in the pulFlagsOut

d. This call requires an active Asynchronous Context Handle returned from

) AsyncConnectEx on interface EMSMDB. The Asynchronous Context Handle is
associated with the Session Context.

74 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

This method is part of Notification handling. See [MS-OXCNOTIF] for additional
information on the top of notifications.

long stdcall EcDoAsyncWaitEx (

[in] ACXH acxh,

[in] unsigned long ulFlagsIn,

[out] unsigned long *pulFlagsOut
)

acxh: On input, the client MUST pass a valid Asynchronous Context H
created by calling EcDoAsyncConnectEx on interface EMSMDB. The
Asynchronous Context Handle to identify the Session Context to use f

ulFlagsIn: Unused. Reserved for future use. Client MUST p \¢

pulFlagsOut: Output flags for the client. ‘

Flag

NotificationPending (i thére are pending events for the client

The erver will return the event details in the
ROP response buffer.

AsyncEMSMDB Client Details

1 Abstract Data Model

ome functionality on the AsyncEMSMDB interface, it is required the client store an
asynchronous Context Handle (ACXH) and use it on subsequent interface calls which require
an ACXH context handle.

75 0of 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

3.4.2 Timers

No protocol timers are required beyond those internal ones used in RPC to implement
resiliency to network outages. See RPC Protocols Extensions [MS-RPCE].

3.4.3 Initialization

This interface can only be used after first obtaining an Asynchronous Context Handle
(ACXH) from the method EcDoAsyncConnectEx from interface EMSMDB.

3.4.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict
consistency check at target level 5.0, as specified in section 3 of [MS-RP

Upon the completion of the RPC method, the client returns the result
layer. Some method calls require an RPC context handle which 1
call. See information detailed in section 3 overview for metho

3.4.5 Timer Events ‘

None.

3.4.6 Other Local Events

None.

4 Protocol Examples

The following are exam
connection, submi

s of how use the Office Exchange Protocol

B interface method call EcDoConnectEx with the following
a Session Context with the server:

inding: Binding handle created in step 1.
Pointer to CXH to hold output value. Client should initialize CXH to zero.

szUserDN: String containing the distinguished named of the user making the
EcDoConnectEx call in a directory service. Value: “/o=Microsoft/ou=First
Administrative Group/cn=Recipients/cn=johndoe”.

ulFlags: Value 0x00000000. Normal user access.

76 of 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

ulConMod: Value 0x00340567. Client computed hash on szUserDN value.
cbLimit: Value 0x00000000.

ulCpid: Value 0x000004E4. Code page 1252.

ulLcidString: Value 0x00000409. Locale 1033 ““en-us”.
ulLcidSort: Value 0x00000409. Locale 1033 “en-us”.
ullexrLink: Value OxXFFFFFFFF. No session link.
usFCanConvertCodePages: Value 0x01.

rgwClientVersion: Pointer to unsigned short array conta1
0x183E and 0x03ES. Client supports protocol client v:

pulTimeStamp: Pointer to unsigned long value
rgbAuxIn: Null pointer value. ‘

cbAuxIn: Value 0x00000000.

rgbAuxQOut: Pointer to buffer o
pcbAuxQut: Pointer to u 001008.

3. Server processe‘DoCo ~Verifies that authentication context
assoc1ated w1th hB1 ownership privileges to directory service object

d to the client in this field, might not be what the server
ayer on the server and client might map the context handle.

ollsMax: Value at unsigned long pointer is 0x0000EA60. Client should
poll every 60 seconds.

pcRetry: Value at unsigned long pointer is 0x00000006. Client should retry six
times.

77 of 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

pemsRetryDelay: Value at unsigned long pointer is 0x00001770. Client should
wait 10 seconds between retries.

picxr: Value at unsigned short pointer is a server assigned session index with
value 0x0304.

szDNPrefix: Value at unsigned char pointer is a pointer to a null-terminated ANS
string with value “/0=Microsoft/ou=First Administrative

Group/cn=Configuration/cn=Servers/cn=MBX-SRV-02". Client must fr
allocated memory.

szDisplayName: Value at unsigned char pointer is a pointer to a nu
ANSI string with value “MBX-SRV-02”. Client must free RE
memory.

rgwBestVersion: Value at unsigne
and 0x03ES. Server SHOULD mimic r
supported.

pulTimeStamp: Value at unsi
internal server time when th

Payload
AUX HEADER AUX_EXORGINFO
Version Size Version Type OrgFlags
0x0008 | 0x01 0x17 0x00000001

load is not compressed and not obfuscated.

pcbAuxOut: Value at unsigned long pointer is 0x00000010. Field rgbAuxOut is
16 bytes in length.

Return Value: Value is 0x00000000.

78 of 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

4.2 Client Issuing ROP Commands to Server

1. Client has already established a Session Context with the server. See steps 1 through 3
of section 4.1 and ensure that it has a valid Session Context Handle.

2. Client sends ROP commands to server by calling EcDoRpcExt2 using the Session
Context Handle returned from the EcDoConnectEx call.

pexh: Pointer to CXH value which is 0x00001234.

pulFlags: Pointer to unsigned long containing value 0x00000003. Cli
server to not compress or XOR payload of rgbOut and rgbAuxOut.

rgbln: Client passes extended buffer and payload containi
be processed by server. See [MS-OXCROPS] for more inft
commands.

RPC_HEADER EXT

Version Flags Size SizeActual ServerObjectHandleTable

0x0000 0x0004 | 0x0152 16 bytes

AuxQut: Pointer to buffer of size 0x1008.
pcbAuxOut: Pointer to unsigned long value 0x00001008.

3. Server processes EcDoRpcExt2 request. Server verifies that Session Context Handle is
for a valid session context for this user. Server processes ROP request commands and
returns ROP response results to client. Server returns the following output values:

79 of 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

pexh: Value at CXH pointer is 0x00001234. Server MUST return same value as
on input unless session termination is requested in which case it would return
0x00000000.

pulFlags: Value at unsigned long is 0x00000000.

rgbOut: Server returns the following extended buffer and payload contain ROP
response commands:

RPC HEADER EXT Payload

ROP Response Com

Version Flags Size SizeActual RopSize

0x0000 0x0004 | 0x0052 | 0x0052 0x0042

Payload is not compressed and not (ﬁlscated.
pebOut: Value is 0x0000005A.
rgbAuxQOut: Server returns not output buffer.

pecbAuxQOut: Value is Ox

pexh: Pointer to CXH value which is 0x00001234.

pulFlags: Pointer to unsigned long containing value 0x00000007. Client requests
server to not compress or XOR payload of rgbOut and rgbAuxOut. Client requests
response chaining.

80 0f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

rgblIn: Client passes extended buffer and payload containing ROP commands to
be processed by server. See [MS-OXCROPS] for more information on ROP

commands.
RPC HEADER EXT Payload
ROP Request Commands
Version Flags Size SizeActual RopSize Rops
0x0000 0x0004 | 0x0152 | 0x0152 0x0142 320 bytes (last ROP co
RopReadStream)

Payload is not compressed and not obfuscated.
cblIn: Value of 0x0000015A.
rgbAuxIn: Null pointer value. ‘

cbAuxIn: Value of 0x00000000.

n the rgbOut output buffer and the server adds another extended
and payload. Server returns the following output values:

Value at CXH pointer is 0x00001234.
pulFlags: Value at unsigned long is 0x00000000.

rgbOut: Server returns two extended buffer header and payload pairs containing
ROP response commands. The last payload contains only the RopReadStream
command.

810f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

RPC_HEADER EXT Payload RPC_HEADER EXT Payload
Flags: 0x0000 Flags: 0x0004
ROP Response Commands ROP Response Command
Size: 0x7FFE Size: 0x2008
RopSize Rops SOHT RopSize Rop SOHT
O0x7FEE ... 16 bytes 0x1FF8 16 bytes

Payloads are not compressed and not obfuscated.
pebOut: Value is 0x0000A016.

rgbAuxOut: Server returns nothing in the auxiliary output buffer.
pebAuxQOut: Value is 0x00000000.

pulTransTime: Value at unsigned long pointei
number of milliseconds it took the s‘er to pr

Return Value: Value is 0x00000000.

4.4 Client Disconnecting from Sery

1.
Context Handle. For more inft
2. Clientis exiting&i wants to
EcDoDisconnect usi
3.

ssion Context for this user. Server destroys Session Context
Context Handle. Server returns the following output values:

pointer is 0x00000000.

alue: Value is 0x00000000.

82 0f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

5 Security

5.1 Security Considerations for Implementers

To reduce exploits of server code, anonymous access to the server SHOULD NOT be granted.
Only properly authenticated RPC binding handles should be allowed to make method calls on
the EMSMDB and AsyncEMSMDB interfaces.

Most of the EMSMDB and AsyncEMSMDB interface methods require a Session Confext
Handle which can only be created from a successful call to EcDoConnectEx. The server
MUST verify that the authentication context on the RPC binding handle has suffieient
permissions to access the server and create a Session Context. These method callsare used by
the client to create a Session Context with the server. They are also used 16 declare,to the
server who is attempting to access messaging data on the server through the distinguished
named passed in the szUserDN field. The server should verify that the authenfication context
on the RPC binding handle has ownership permissions to the dize€tony service object
associated with the distinguished name. If the authentication context does not have@dequate
permissions, the server MUST fail the call and not create aiSession Context:

Although the protocol allows for data compression and data obfuseation on method call
EcDoRpcExt2, this SHOULD NOT be used in place of proper enctyption. It is recommended
that RPC level encryption be used by the clientwhen,establishing a connection with the
server. This will properly encrypt all fields of all method calls on the EMSMDB and
AsyncEMSMDB interfaces.

5.2 Index of Security Parameters

None.

6 AppendixAaFull IDL/ACF

For ease of implementation, the full IDL and ACF is provided below, where “ms-rpce.idl”
refers to the IDL foufid in [MS-RPCE] Appendix A. The syntax uses the IDL syntax
extensions as specified in [MS-RPCE] Sections 2.2.4 and 3.1.5.1. For example, as specified in
[MSRPCE] Section 2:24.8, a pointer default declaration is not required and

pointet, ‘default(unique) is assumed.

6.14 'IDL

import "ms-rpce.idl";

typedef [context handle] void * CXH;

typedef [context handle] void * ACXH;

83 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

[uuid (A4F1DB00-CA47-1067-B31F-00DD010662DA),
version(0.81),
pointer default (unique)]
interface emsmdb
{
long stdcall OpnumOReserved (

long stdcall EcDoDisconnect (

[in, out, ref] CXH * pcxh

long stdcall OpnumZReserved (

long stdcall Opnum3Reserved (

long stdcall EcRRegisterPushN
[in, out, ref] CXH * pcxh,
[in] unsigned long ‘c,
[in, size is(cbContext)
[in] unsigned s
[in] unsigned long

[in, size is(

11 OpnumbReserved (

g _ stdcall EcDummyRpc (
andle t hBinding

84.0f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

long _ stdcall Opnum7Reserved (
) i

long stdcall Opnum8Reserved (
)i

long stdcall Opnum9Reserved (
)

long _ stdcall EcDoConnectEx (

[in] handle t hBinding,

[out, ref] CXH * pcxh,

[in, string] unsigned char * szUserDN,
[in] unsigned long ulFlags,

[in] unsigned long ulConMod, ‘
[in] unsigned long cbLimit,

[in] unsigned long ulCpid,

[in] unsigned long ulLcidString,
[in] unsigned long ulLcidSort,
[in] unsigned long ulIcxrLink,
[in] unsigned shor
[out] unsigned long * p
[out]
[out] unsigned lo
[out]
[out,
[out, **szDisplayName,

[in] ientVersion[3],

size is(cbAuxIn)] unsigned char rgbAuxIn[],
unsigned long cbAuxIn,

length is (*pcbAuxOut), size is(*pcbAuxOut)] unsigned char
xOout[],

[in, out, range(0x0, 0x1008)] unsigned long *pcbAuxOut

85 0f93

[MS-OXCRPC] - v0.1

‘Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

);

long stdcall EcDORpcCEXt2 (
[in, out, ref] CXH * pcxh,
[in, out] unsigned long *pulFlags,

[in, size is(cbIn)] unsigned char rgbIn[],

[in] unsigned long cbiln,

[out, length is(*pcbOut), size is(*pcbOut)] unsigned char rgbOut|
[in, out, range (0x0, 0x40000)] unsigned long *pcbOut,

[in, size is(cbAuxIn)] unsigned char rgbAuxIn[],

[in] unsigned long cbAuxIn,

[out, length is (*pcbAuxOut), size is(*pcbAuxOut)] unsign c
rgbAuxOut[],

[in, out, range (0x0, 0x1008)] unsigned long *pcb out,

[out] unsigned long *pulTransTime ‘
)

long stdcall OpnumlZReserved (
)

long _ stdcall Opn
)

ugReser

long _ stdcall EcC
[in] CXH cxh,
[out, ref]

);

4A-4572-206E-B268-6B199213B4E4) ,
),

pointer default (unique)]

(52

rsion (0.0

rface asyncemsmdb

{
long stdcall EcDoAsyncWaitEx (

86 0f 93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

[in] ACXH acxh,

[in] unsigned long ulFlagsIn,
[out] unsigned long *pulFlagsOut
)

6.2 ACF

typedef [context handle noserialize] ACXH;

interface asyncemsmdb

{
[async] EcDoAsyncWaitEx () ; ‘

The information in this specification i ng versions of
Office/Exchange:

e Office 2003

applied

ice Pack 1 applied

ack 2 applied

7 with Service Pack 1 applied
Exchange 2007 with Service Pack 1 applied

Exceptions, if any, are noted below. Unless otherwise specified, any statement of optional
behavior in this specification prescribed using the terms SHOULD or SHOULD NOT

87 0f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

implies Office/Exchange behavior in accordance with the SHOULD or SHOULD NOT
prescription. Unless otherwise specified, the term MAY implies Office/Exchange does
not follow the prescription.

7.1 Protocol Sequences

7.1.1 Exchange Server Support

Exchange 2003 allows all RPC protocol sequences listed in section 2.1.

Exchange 2007 allows only the following RPC protocol sequences: ncalrpc, nca
ncacn_http.

7.1.2 Office Client Support
Office 2003 uses only the following RPC protocol sequences:

Office 2007 uses only the following RPC proto‘sequen

7.2 Authentication Methods

The following table lists the authentication m
Exchange 2007. A client MUST authenticat

d by Exehange 2003 and
authentication methods.

iIMSMDB Interface:

880f93

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Method Exchange | Exchange | Exchange | Exchange | Exchange
2003 2003 SP1 | 2003 SP2 | 2007 2007 SP1
EcDoDisconnect v v v v 4
EcRRegisterPushNotification v v v v
EcDummyRpc v v v
EcDoConnectEx v v v
EcDoRpcExt2 v v v
EcDoAsyncConnectEx
AsyncEMSMDB Interface: ‘
Method Exchange xchange | Exchange
2003 SP2 2007 2007 SP1
EcDoAsyncWaitEx v v

7.3.2 Office Client Sup

ds based on which version of Exchange

ich RPC methods are used by an Officeclient when

SCrver.

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Office Office Office Office Office
2003 2003 2003 SP2 | 2007 2007 SP1
SP1
v v v v v
EcRRegisterPushNotification v v v v v
89 0f 93

EcDummyRpc
EcDoConnectEx v v v v v
EcDoRpcExt2 v v v v v
EcDoAsyncConnectEx
AsyncEMSMDB Interface:
Method Office Office Office
2003 2003 SP1 | 2003 SP2
EcDoAsyncWaitEx

7.3.2.2 Accessing Exchange 2007

Below is a table indicating which RPC metho

accessing an Exchange 2007 server.
EMSMDB Interface:

\ 4

ce client when

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Method Office Office Office
‘ 2003 SP2 2007 2007 SP1
EcDoDisconnect v v v
EcRRegisterPus v v v v
v v v v
v v v v
v v
syncEMSMDB Interface:
Method Office Office Office Office Office
2003 2003 SP1 | 2003 SP2 2007 2007 SP1
90 0f 93

EcDoAsyncWaitEx

7.4 Client Access Licenses

As of Exchange 2007 the server no longer counts individual connections for Client Access
License accounting, so Session Context linking is not required in method call
EcDoConnectEx on the EMSMDB interface.

| @*@

Q\

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

91 0f93

8 Index

ACF, 87
Applicability statement, 9
AsyncEMSMDB client details, 75
AsyncEMSMDB server details, 72
Authentication methods, 88
Client connecting to server, 76
Client disconnecting from server, 82
Client issuing ROP commands to server, 79
Client receiving “packed” ROP response from server, 80
Common data types, 11
EMSMDRB client details, 69
EMSMDRB server details, 27
Full IDL/ACF, 83

ACF, 87

IDL, 83
Glossary, 5
IDL, 83
Index of security parameters, 83
Informative references, %
Introduction, 5
Messages, 10
Common data
Transport, 10

\ 4

AsyncEMSMDB client details, 75
AsyncEMSMDB server details, 72
SMDB client details, 69
SMDB server details, 27
Protocol examples, 76

92093

[MS-OXCRPC] - v0.1

Wire Format Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Client connecting to server, 76

Client disconnecting from server, 82

Client issuing ROP commands to server, 79

Client receiving “packed” ROP response from server, 80
Protocol sequences, 88
References, 6

Informative references, 6

Normative references, 6

Relationship to other protocols, 9
RPC methods, 88
Security, 83

Index of security parameters, 83

Security considerations for implementers, 83
Security considerations for implementers, 83
Standards assignments, 10
Transport, 10

Vendor-extensible fields, 9 ‘

Versioning and capability negotiation, 9 \

[MS-OXCRPC] - v0.1
‘Wire Format Protocol Specification

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

93 0f93

