[MS-OFFCRYPTO]:
Office Document Cryptography Structure Specification

Intellectual Property Rights Notice for Open Specifications Documentation

Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

No Trade Secrets. Microsoft does not claim any. trade secret rights in this documentation.

Patents. Microsoft has patents that may cover yourimplementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights.

Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

Preliminary Documentation. This Open Specification provides documentation for past and current
releases and/or for the pre-release (beta) version of this technology. This Open Specification is final

1/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com

documentation for past or current releases as specifically noted in the document, as applicable; it is
preliminary documentation for the pre-release (beta) versions. Microsoft will release final
documentation in connection with the commercial release of the updated or new version of this

technology. As the documentation may change between this preliminary version and the final

version of this technology, there are risks in relying on preliminary documentation. To the extent
that you incur additional development obligations or any other costs as a result of relying on this
preliminary documentation, you do so at your own risk.

Revision Summary

Revision Revision

Date History Class Comments

04/04/2008 | 0.1 Initial Availability

06/27/2008 1.0 Major Revised and edited the technical content

10/06/2008 1.01 Editorial Revised and edited the technical content

12/12/2008 1.02 Editorial Revised and edited the technical content

03/18/2009 1.03 Editorial Revised and edited the technical content

07/13/2009 1.04 Major Revised and edited the technical content

08/28/2009 1.05 Major Updated and revised the technical content

11/06/2009 1.06 Editorial Revised and edited the technical content

02/19/2010 2.0 Editorial Revised and edited the technical content

03/31/2010 2.01 Editorial Revised and edited the technical content

04/30/2010 2.02 Editorial Revised and edited the technical content

06/07/2010 2.03 Editorial Revised and edited the technical content

06/29/2010 | 2.04 Editorial Changed language and formatting in the technical
content.

07/23/2010 2.05 Minor Clarified the meaning of the technical content.

09/27/2010 | 2.05 No change No changes to the meaning, language, or formatting of
the technical content.

11/15/2010 2.05 No change No changes to the meaning, language, or formatting of
the technical content.

12/17/2010 2.05 No change No changes to the meaning, language, or formatting of
the technical content.

03/18/2011 | 2.05 No change No changes to the meaning, language, or formatting of
the technical content.

06/10/2011 2.05 No change No changes to the meaning, language, or formatting of
the technical content.

[MS-OFFCRYPTO] — v20120122

Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

2/116

Revision Revision
Date History Class Comments
01/20/2012 2.6 Minor Clarified the meaning of the technical content.

[MS-OFFCRYPTO] — v20120122

Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

3/116

Table of Contents

1 INtroduction....cicciciiiiiiir i r s s s r e A n 7
3 A] [0 111 oV PP 7
B U= = <] Lo PP 8

1.2.1 NOIrmative Ref@rENCeS .. ciui ittt st e e e e aees 8
1.2.2 INfOrmative REFEIENCES ... e v e e e e e e ns 10
1.3 SEructure OVErVIEW (SYNOPSIS) «iriiuiiuiiitiitiite it ettt aastae et et a e ateaneate e aneaananes 10
G T R D T) = Y o 1= Y ol < PP 10
1.3.2 Information Rights Management Data Space (IRMDS).......cccovuiiiiiiniiein e eeensianen. 11
G TG B = o T Y] of o] o I R S S 12
1.3.3.1 XOR ObfUSCAtION . .uuieiiiieieieie e re e e e e e e e e e e e e e e s e be e e 13
1.3.3.2 40-bit RCA ENCIyPlioN «uviiiiiiiii it e e et e e e ettt e e e a e e e e e sna e n i e eas 13
1.3.3.3 CryptoAPI RC4 ENCIrYPLION ..viuiieiiiiiiiiiiiii e e e s e s e e s e e s e aeaias 13
1.3.3.4 ECMA-376 Document ENCryplion ..oiiviiiiiiiiii i i i s e s st e st e e vaaeenes 13
1.3.4 Write ProteCtion .o e e 14
1.3.5 Digital Signatures.......oeiiiiiiii e e e e 14
3G I SR =Y =T @] e [=1 o 1 [P SR 14
G T Y o o 1 o [= Tl T 1 o T P s S SN 14
1.3.8 OLE Compound File Path ENCOAINGiuvitiiiiiiiniiiti e iteinnnsnein e sieas b asineeesnnnnanes 14
1.3.9 Pseudocode Standard ObJeCtScouiiieiiiiiiiii s der st rr e e 14
G 2= T R L o o= s P P P 14

G S TR A o o [T S P 15

BC 2= T R o o= o [PP 15

G RS TR o = o o 1 15

1.4 Relationship to Protocols and Other StruCtUrescociiviiii i 15
1.5 Applicability Statement. . ..o i i e 15
BT R I T 1= Y o - [o< PPN 15
B 21 2 P 15
BTG B = o T Y) of o] o I 16
1.6 Versioning and LOCalization it e 16
1.7 Vendor-Extensible Fields. ... i s e e e e 16

7 o T ot o1 = e 17

B R B - =] o =T = 17
0 s R 1 = PP 17
2.1.2 Length-Prefixed Padded Unicode String (UNICODE-LP-P4)cociiiiiiiiiiiiniieanns 18
2.1.3 Length-Prefixed UTF-8 String (UTF-8-LP-P4)......cciriiiiiiiiiii s 19
A R Y= =] T o S 19
2.1.5 DataSpaceVersioNIN O .. iu . cie et aaas 19
2.1.6 Dat@SPaceMapiuisiiitiiii e 20

2.1.6.1 DataSpaceMapENtry SErUCTUIEooviriiiiii e 21
2.1.6.2 DataSpaceReferenceComponent StruCtUrevuiiiiiiieieie i erereaeeeens 21
2.1.7 DataSpaceDefinitioncvieieiiiiii e 22
2.1.8 TransformINfOHEAAEr........oieiii e e 23
2.1.9 EncryptionTransformInfocciiiiiiiiii i e 24

2.2 Information Rights Management Data Space (IRMDS)ccooviiiiiiiiiiiiiiiee e 24
2.2.1 \Ox06DataSpaces\DataSpaceMap Streamcoiuieiuiiiiiiii e eeeeaans 25
2.2.2 \Ox06DataSpaces\DataSpacelnfo StOrageccvviiiiiiiiiiiiiiiir s 25
2.2.3 \Ox06DataSpaces\TransformInfo Storage for Office Binary Documents.................. 26
2.2.4 \Ox06DataSpaces\TransformInfo Storage for ECMA-376 Documents..........c.c...evune 26
2.2.5 EXensibilityHEadEr 27

4/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

2.2.6 IRMDSTransfOrMINTO .iuuiuieiiei it e e e e e et a e e e aeaaanens 27
2.2.7 ENd-User LiCENSE STramM c.uviiiiiiiiiiii ittt r s e s e s e e s e e e e raeaaanens 28
A A S I T =1 o =7 =1 I 5 P 28
2.2.9 ENdUserLicenseHEAdEuiviiiitiiii i 28
2.2.10 Protected Content STream ..ociiviiiiiiii i 29
2.2.11 Viewer Content SErEam ..uvii i e e e e 29
720G T = o Tl Y5 of o o I PP 30
2.3.1 EncryptionHeaderFlags. ..o 30
2.3.2 ENCryplionNHEadE .. o e 31
G TG T =1 T Vo L To Y o NV <Y | =T o PP 33
2.3.4 ECMA-376 Document ENCryPtion .ooiuiiiiei it i et vieevisesane s eeeenesnn e e sinenns 34
2.3.4.1 \Ox06DataSpaces\DataSpaceMap Streamcccviviiiiiiiiiiiiiiiii e beeeaan 34
2.3.4.2 \Ox06DataSpaces\DataSpaceInfo StOrage.......cooviiiiiieininie et eaans 34
2.3.4.3 \Ox06DataSpaces\TransformInfo StOragecccviiiiiiiiiiiiiiii i 35
2.3.4.4 \EncryptedPackage Streamccocviiiiiiiiii e 35
2.3.4.5 \EncryptionInfo Stream (Standard Encryption)ccoiiiiiiiiiiis i i 36
2.3.4.6 \EncryptionInfo Stream (Extensible ENCryption).........c.cooviitorieiinini e ieieeens 37
2.3.4.7 ECMA-376 Document Encryption Key Generation (Standard Encryption).......... 39
2.3.4.8 Password Verifier Generation (Standard Encryption)ccciiiideiiiiiiiiiiiinnn . 40
2.3.4.9 Password Verification (Standard ENcryption)c.ccoeieieieieieii bt neeeeans 40
2.3.4.10 \EncryptionInfo Stream (Agile ENCryption)citiieiiiiiniiiiiiicie e i 40
2.3.4.11 Encryption Key Generation (Agile Encryption) e 47
2.3.4.12 Initialization Vector Generation (Agile Encryption)..........coiiiiiiiiiiiiiiinennnnnns. 48
2.3.4.13 PasswordKeyEncryptor Generation (Agile Encryption)cccoviiiiiiiiiinnnnn. 48
2.3.4.14 Datalntegrity Generation (Agile ENCryption)cccoiiiiiiiiiiiiienee 49
2.3.4.15 Data Encryption (Agile Encryption) ...t i 50
2.3.5 Office Binary Document RC4 CryptoAPI ENCryplionccociiveieininiiiiiiiiinenenennnns 50
2.3.5.1 RC4 CryptoAPI Encryption Header i it 50
2.3.5.2 RC4 CryptoAPI Encryption Key Generationcccciiiiiiiiiiiiiiiniiiieneneenn 51
2.3.5.3 RC4 CryptoAPI EncryptedStreamDescriptor Structure.........ccoovviviiiiiiiiiinnnnnn. 52
2.3.5.4 RC4 CryptoAPI Encrypted Summary Stream.........ccooviiiiiiiiiiiiiiinee e 53
2.3.5.5 Password Verifier Generation . .oiv.iie i 55
2.3.5.6 Password VerifiCation au.u ..o et et 55
2.3.6 Office Binary Document RC4 ENCryplion ..civ. it 55
2.3.6.1 RC4 ENCryption HEader i ittt it et e e e e ae e 55
2.3.6.2 Encryption Key Derivation . .iiu . et 56
2.3.6.3 Password Verifier GENEration wui. i i 57
2.3.6.4 Password VerifiCation .uiu i e e 57
AN F A (0] 2 G © 1] 8 1Yo | o] o B 57
2.3.7.1 Binary Document Password Verifier Derivation Method 1ccoovviiiieinnnnnn, 58
2.3.7.2 Binary Document XOR Array Initialization Method 1 ..., 58
2.3.7.3 Binary Document XOR Data Transformation Method 1..........ccocvviiiiiiiiiiinninnnn. 60
2.3.7.4 Binary Document Password Verifier Derivation Method 2ccooviviiiiiiinnnnnn. 62
2.3.7.5 Binary Document XOR Array Initialization Method 2ccooiiiiiiiiiiiiie, 62
2.3.7.6 Binary Document XOR Data Transformation Method 2cocoiiiiiiiiiinnnnns 63
2.3.7.7 Password VerifiCationoceiiiiriiiiei i e e 63
2.4 Document Write ProteCtioncciieiiiiiiii e 64
2.4.1 ECMA-376 Document Write Protectionccooeiiiiii i 64
2.4.2 Binary Document Write ProteCtionccvviiiiiiiiiiiiiiii 64
2.4.2.1 Binary Document Write Protection Method 1ccoiiiiiiiiiiiii e, 64
2.4.2.2 Binary Document Write Protection Method 2 ... 64
2.4.2.3 Binary Document Write Protection Method 3 ... 64
2.4.2.4 IS0 Write Protection Methodciiiiiiiiii e 64
5/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

2.5 Binary Document Digital Signaturesouiuiiiiiiiii e 65
2.5.1 CryptoAPI Digital Signature Structures and Streamsccoviviiiiiiiiiiiiiiiie i 66
2.5.1.1 TimeENcoding StrUCTUIEoiiiiiiiii e e 66
2.5.1.2 CryptoAPI Digital Signature CertificateInfo Structure.........cccoviiiiiiiiiiiiiinnnnn. 66
2.5.1.3 CryptoAPI Digital Signature STtruCturecociiiiiiiiiiiiiii e 68
2.5.1.4 _SigNatures SEre@m ..ouii i 69
2.5.1.5 CryptoAPI Digital Signature Generationccoviiiiiiiiiiiii e 69
2.5.2 Xmldsig Digital Signature Elementsccoiiiiiiiii 71
2.5.2.1 SignedInfo El@MENT ..ot 71
2.5.2.2 SignatureValue Element ..o 71
2.5.2.3 KeyInfo El@mMENt. ..o e 71
2.5.2.4 idPackageObject Object Elementccoiiiiiiiiiiiiii e b 72
2.5.2.5 idOfficeObject Object Element........cooviiiiiiiiii et e 72
2.5.2.6 XAES Ele@ments .t 76
2.5.3 _XMISIgNAtures StOrageciviiiiiiiiiiiii e 76
3 Structure EXamples ..icciimirmirississs s s s s s s s s s s sn s s anian s s an s nnninsannnnnnnas 78
T R V=T o] To T I o <=1 o R 78
3.2 DataSpaceMap StrEam ..uiiiiiiii it i e d e e e 79
3.2.1 DataSpaceMapENntry SErUCLUIEociiiiiii i e e rae e 80
3.3 DRMENcryptedDataSpace Stream ..ivivi i die e et be e et e be et e b e e aeaaaans 81
I 0)01] o] 0 T= T Y20 o o =T=1 o o O S 81
3.5 EUL-ETRHA1143ZLUDD412YTI3M5CTZ Stream EXample ...ccovieiiiiiiiiie e eeenn 83
3.5.1 EndUserLicenseHeader StrUuCTUIreiusidiiie i st e s an st e e e e e nneneas 84
O T O o o o= I 1 - 1 o O P PP 84
3.6 EncryptionHeader StrUCTUIE ..o e i e et aeaeaas 86
3.7 ENCryptionVerifier STrUCLUIEcci e e e e e e e e e e e e e e eeenes 87
GRS I = aTela /o1 d (o1} { o) o TS] o '=T=] o [PP 88
3.9 \EncryptionInfo Stream (Third-Party Extensible Encryption)c.cocoeviiiiiiiiiiiencnens. 90
3.10 Office Binary Document RC4 ENCryplionco ittt i e e e 90
G0 0 s R = o Tol V7o'l o o I o 1=T= [[ol S PP 90
3.11 PasswordKeyEncryptor (Agile ENCryprion)occvviiiiiiiiii i ne e e 91
=T o] 1] o 3 e 95
L N B T = B o = o == 95
4.2 Information Rights Management .. i e e e ear e s 95
LG T Tl V701 Lo 95
4.3.1 ECMA-376 Document ENCIYPLiON . ovireii ittt e e e e s anaansn e raeenereanennanes 95
4.3.2 Office Binary Document RC4 CryptoAPI ENCryptioncocovvviiiiiiiiiiiiiinie e 95
4.3.3 Office Binary Document RC4 ENCryplionovveieiiiiiiii et ne e enea s 96
LA T I (@12 R @] o) U= ot) o] P 96
4.4 Document Write ProteCtion ..uu. .o s 96
4.5 Binary Document Digital Signaturescoiiiiiiiii 97
5 Appendix A: Product Behavior........ccociiiririmsirssims s s s ssssa s s ssnsassnsasnnsasnnsas 98
6 Change TraCKiNMQu i iorimieriemrenmasmasmssssssssssssmsssasmssmsssssssssssssssssssssssnssnnsnnsasssnsansnnnnnns 106
7 1 5 e 1= 112
6/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

1 Introduction

This document specifies the Office Document Cryptography Structure for documents with
Information Rights Management (IRM) policies, document encryption, or with signing and write
protection applied. More specifically, this document describes the following:

= The data spaces structure, which is a generic mechanism for storing information that has been
transformed, along with a list of the transforms, protection and encryption mechanisms used.

= The Information Rights Management Data Space (IRMDS) structure, which is used to store rights
management policies that have been applied to a particular document.

= The encryption, signing, and write protection structures.

Sections 1.7 and 2 of this specification are normative and contain RFC 2119 language. All other
sections and examples in this specification are informative.

1.1 Glossary
The following terms are defined in [MS-GLOS]:

ASCII

base64

certificate

certificate chain

Component Object Model (COM)

Coordinated Universal Time (UTC)

Cryptographic Application Programming Interface (CAPI) or CryptoAPI
cryptographic service provider (CSP)

Data Encryption Standard (DES)

Distinguished Encoding Rules (DER)

encryption key

GUID

Hash-based Message Authentication Code (HMAC)
language code identifier (LCID)

little-endian

RC4

salt

Unicode

UTF-8

X.509

The following terms are defined in [MS-OFCGLOS]:

Advanced Encryption Standard (AES)
block cipher

cipher block chaining (CBC)

data space reader

data space updater

data space writer

Information Rights Management (IRM)
MD5

OLE compound file

protected content

SHA-1

7/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

storage

stream

transform

Uniform Resource Identifier (URI)
Uniform Resource Locator (URL)
XOR obfuscation

The following terms are specific to this document:

data space: A series of transforms that operate on original document content in a specific order.
The first transform in a data space takes untransformed data as input and passes the
transformed output to the next transform. The last transform in the data space produces data
that is stored in the compound file. When the process is reversed, each transform in the data
space is applied in reverse order to return the data to its original state.

electronic codebook (ECB): A block cipher mode that does not use feedback and encrypts each
block individually. Blocks of identical plaintext, either in the same message or in a different
message that is encrypted with the same key, are transformed into identical ciphertext blocks.
Initialization vectors cannot be used.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specification documents do not include a publishing year because links
are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[BCMO800-38A] National Institute of Standards and Technology, "Recommendation for Block Cipher
Modes of Operation: Methods and Techniques", NIST Special Publication 800-38A, December 2001,
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

[Can-XML-1.0] Boyer, 3., "Canonical XML Version 1.0", W3C Recommendation, March 2001,
http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315

[DRAFT-DESX] Simpson, W.A. and Baldwin R., "The ESP DES-XEX3-CBC Transform", July 1997,
http://tools.ietf.org/html/draft-ietf-ipsec-ciph-desx-00

[ECMA-376] ECMA International, "Office Open XML File Formats", 1st Edition, ECMA-376, December
2006, http://www.ecma-international.org/publications/standards/Ecma-376.htm

[ISO/IEC 10118] International Organization for Standardization, "Hash-functions -- Part 3:
Dedicated hash-functions", March 2004,
http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?csnumber=39876

8/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=113491
http://go.microsoft.com/fwlink/?LinkId=120197
http://go.microsoft.com/fwlink/?LinkId=128905
http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409

[ITUX680-1994] ITU-T, "Information Technology—Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation", ITU-T Recommendation X.680, July 1994, http://www.itu.int/rec/T-
REC-X.680-199407-S/en

[MS-CFB] Microsoft Corporation, "Compound File Binary File Format".

[MS-DOC] Microsoft Corporation, "Word Binary File Format (.doc) Structure Specification".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-OSHARED] Microsoft Corporation, "Office Common Data Types and Objects Structure
Specification".

[MS-PPT] Microsoft Corporation, "PowerPoint Binary File Format (.ppt) Structure Specification".

[MS-RMPR] Microsoft Corporation, "Rights Management Services (RMS): Client-to-Server Protocol
Specification".

[MS-UCODEREF] Microsoft Corporation, "Windows Protocols Unicode Reference".

[MS-XLS] Microsoft Corporation, "Excel Binary File Format (.xls) Structure/Specification".

[MS-XLSB] Microsoft Corporation, "Excel Binary File Format (.xIsb) Structure Specification".

[RFC1319] Kaliski, B., "The MD2 Message-Digest Algorithm", RFC 1319, April 1992,
http://www.ietf.org/rfc/rfc1319.txt

[RFC1320] Rivest, R., "The MD4 Message-Digest Algorithm", RFC 1320, April 1992,
http://www.ietf.org/rfc/rfc1320.txt

[RFC1851] Karn, P., Metzger, P., and Simpson, W., "The ESP Triple DES Transform", RFC 1851,
September 1995, http://www.rfc-editor.org/rfc/rfc1851 .txt

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed-Hashing for Message
Authentication", RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2268] Rivest, R., "A Description of the RC2(r) Encryption Algorithm", RFC 2268, March 1998,
http://www.ietf.org/rfc/rfc2268.txt

[RFC2822] Resnick, P., Ed., "Internet Message Format", STD 11, RFC 2822, April 2001,
http://www.ietf.org/rfc/rfc2822.txt

[RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography Specification Version 2.0", RFC
2898, September 2000, http://www.rfc-editor.org/rfc/rfc2898.txt

[RFC3280] Housley, R., Polk, W., Ford, W., and Solo, D., "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC 3280, April 2002,
http://www.ietf.org/rfc/rfc3280.txt

[RFC3447] Jonsson, J., and Kaliski, B., "Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1", RFC 3447, February 2003,
http://www.ietf.org/rfc/rfc3447.txt

[RFC4634] Eastlake III, D., and Hansen, T., "US Secure Hash Algorithms (SHA and HMAC-SHA)",
RFC 4634, July 2006, http://www.ietf.org/rfc/rfc4634.txt

9/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=120478
http://go.microsoft.com/fwlink/?LinkId=120478
http://go.microsoft.com/fwlink/?LinkId=149726
%5bMS-DOC%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-OSHARED%5d.pdf
%5bMS-OSHARED%5d.pdf
%5bMS-PPT%5d.pdf
%5bMS-RMPR%5d.pdf
%5bMS-RMPR%5d.pdf
%5bMS-UCODEREF%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-XLSB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90273
http://go.microsoft.com/fwlink/?LinkId=90274
http://go.microsoft.com/fwlink/?LinkId=128901
http://go.microsoft.com/fwlink/?LinkId=90314
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90330
http://go.microsoft.com/fwlink/?LinkId=90385
http://go.microsoft.com/fwlink/?LinkId=119708
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90422
http://go.microsoft.com/fwlink/?LinkId=90486

[W3C-XSD] World Wide Web Consortium, "XML Schema Part 2: Datatypes Second Edition", October
2004, http://www.w3.0rg/TR/2004/REC-xmlschema-2-20041028

[XAdES] ETSI, "XML Advanced Electronic Signatures (XAdES)", ETSI TS 101 903 V1.3.2,
http://uri.etsi.org/01903/v1.3.2/

[XMLDSig] Bartel, M., Boyer, 1., Fox, B., et al., "XML-Signature Syntax and Processing", W3C
Recommendation, February 2002, http://www.w3.0rg/TR/2002/REC-xmldsig-core-20020212/

1.2.2 Informative References

[ISO/IEC-29500-1] International Organization for Standardization, "Information Technology -
Document description and processing languages - Office Open XML File Formats - Part 1:
Fundamentals and Markup Language Reference", ISO/IEC PRF 29500-1:2008,
http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?csnumber=51463

[MSDN-CAB] Microsoft Corporation, "Microsoft Cabinet SDK", March 1997,
http://msdn.microsoft.com/en-us/library/ms974336.aspx

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary".

1.3 Structure Overview (Synopsis)

1.3.1 Data Spaces

The data spaces structure describes a consistent method of storing content in OLE compound files
that has been transformed in some way. The structure stores both the protected content and
information about the transforms that have been applied to the content. By storing all of this
information inside an OLE compound file, client'software has all of the information required to read,
write, or manipulate the content. A standard structure of streams (1) and storages allows various
software components to interact with the data in a consistent manner.

The data spaces structure allows client ‘@applications to describe one or more arbitrary transforms.
Each transform represents a single arbitrary operation to be performed on a set of storages or
streams in the original document content. One or more transforms can then be composited into a
data space definition. Data space definitions can then be applied to arbitrary storages or streams in
the original document content in the data space map (section 2.1).

Because of the layers of indirection between transforms and document content, different transforms
can be applied to different parts of the document content, and transforms can be composited in any
order.

The following figure illustrates the relationships between the DataSpaceMap stream, the
DataSpacelnfo storage, the TransformInfo storages, and the protected content. Note that other
streams and storages are in the document; this figure describes only the relationships between
these storages and streams.

10/ 116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=90563
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=130861
http://go.microsoft.com/fwlink/?LinkId=132464
http://go.microsoft.com/fwlink/?LinkId=89962
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

Compound File

Storage: Ox06DataSpaces

Stream: DataSpaceMap

Structure: DataSpaceMap
rname of

ReferenceComponent

i
name of

DataSpaceName

name of

Storage: DataSpacelnfo

Stream: (name defined by implementation)

TransformReference

Storage: TransformInfo

Figure 1: Relationships between the DataSpaceMap stream, the DataSpacelInfo storage,
the TransformInfo storages, and the protected content

1.3.2 Information Rights Management Data Space (IRMDS)

The Information Rights Management Data Space (IRMDS) structure is used to enforce a rights
management policy applied to a document. The structure defines a transform that is used to encrypt
document content, and it defines a second transform that can be used for certain document types to
compress document content.

The original document content is transformed through encryption and placed in a storage not
normally accessed by the application. When needed, the application uses the transforms defined in
the document to decrypt the protected content.

This structure is an implementation of the data spaces structure. Therefore, implementing the
structure implies storing document content in an OLE compound file.

11/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

Applications that implement this structure will typically store a second document in the OLE
compound file called the "placeholder document." The placeholder document will be put in the
streams or storages normally identified by the application as containing document content, such
that an application that does not detect the IRMDS structure will instead open the placeholder
document.

Applications that implement this structure will typically try to follow the licensing limitations placed
on a document. Typical licensing limitations are described in [MS-RMPR], and include the right to
view, print, edit, forward, or view rights data.

The following figure shows the specific storages, streams, structures, and relationships between
them that are created when the IRMDS structure is used in an ECMA-376 document [ECMA-376].

Compound File

Storage: Ox06DataSpaces

Stream: DataSpaceMap

Structure: DataSpaceMap

name of | Storage/Stream:
4 EncryptedPackage

ReferenceComponent: EncryptedPackage Protected ECMA-376
Document
DataSpaceMName: DRMEncryptedDataSpace

(other streams may
name of exist in the file)

2

Storage: DataSpaceInfo

Stream: DRMEncryptedDataSpace

o TransformReference: DRMEncryptedTransform

N

name of Storage: TransformInfo

L

Stream: 0x06Primary

4 y A A
| Stream“EUL:?7?
A N A N

Stream: Version

‘ Structure:DataSpaceVersionlnfo

Figure 2: ECMA-376 word-processing document with IRMDS structure applied

1.3.3 Encryption
Password-protected documents can be created by using four mechanisms:

= XOR obfuscation.

12/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

%5bMS-RMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113493
%5bMS-OFCGLOS%5d.pdf

= 40-bit RC4 encryption.
= Cryptographic Application Programming Interface (CAPI) or CryptoAPI encryption.<1>
= ECMA-376 document encryption [ECMA-376], which can include one of three approaches:

=Standard encryption: this approach utilizes a binary EncryptionInfo structure. It uses
Advanced Encryption Standard (AES) as an encryption algorithm and SHA-1 as a hashing
algorithm.

=Agile encryption: this approach utilizes an XML EncryptionInfo structure. The encryption and
hashing algorithms are specified in the structure and can be any encryption supported on the
host computer.

=Extensible encryption: this approach uses an extensible mechanism to allow arbitrary
cryptographic modules to be used.

1.3.3.1 XOR Obfuscation

XOR obfuscation is performed on portions of Office binary documents. The normal streams
contained within the document are modified in place. The details of how an application can
determine whether XOR obfuscation is being used and the placement of the password verifier are
specified in the respective binary file format documentation (for more information, see [MS-XLS

and [MS-DOC]).

There are two methods for performing XOR obfuscation, known as Method 1 and Method 2. Method
1 specifies structures and procedures used by the Excel Binary File Format (.xIs) Structure [MS-
XLS], and Method 2 specifies structures and procedures used by the Word Binary File Format (.doc)
Structure [MS-DOC].

1.3.3.2 40-bit RC4 Encryption

40-bit RC4 encryption is performed on portions of Office binary documents. The details of how to
determine whether 40-bit RC4 encryption is being used and the placement of the password verifier
are specified in the respective binary file format documentation (for more information, see [MS-XLS
and [MS-DOC]). The same mechanisms for generating the password verifier, deriving the
encryption key, and encrypting data are used for all file formats supporting 40-bit RC4 encryption.

1.3.3.3 CryptoAPI RC4 Encryption

CryptoAPI RC4 encryption is performed on portions of Office binary documents. The documents will
contain a new stream to contain encrypted information, but can also encrypt other streams in place.
The details of how to determine whether CryptoAPI RC4 encryption is being used and the placement
of the password verifier are specified in the respective binary file format documentation (for more
information, see [MS-XLS], [MS-DOC], and [MS-PPT]). The same mechanisms for generating the
password verifier, storing data specifying the cryptography, deriving the encryption key, and
encrypting data are used for all file formats supporting CryptoAPI RC4 encryption.

1.3.3.4 ECMA-376 Document Encryption

Encrypted ECMA-376 documents [ECMA-376] use the data spaces functionality to contain the entire
document as a single stream in an OLE compound file. All ECMA-376 documents [ECMA-376] adhere
to the approaches specified in this document and do not require knowledge of application-specific
behavior to perform encryption operations. The overall approach is very similar to that used by
IRMDS.

13 /116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113493
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-DOC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-DOC%5d.pdf
%5bMS-PPT%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

1.3.4 Write Protection

Application of password-based write protection for Office binary documents is specified in section
2.4.2. Write-protected binary documents vary according to the file format. A summary of each type
follows:

= [MS-XLS]: The password is converted to a 16-bit password verifier, stored in the document as
described in [MS-XLS], and the document is then encrypted as described in both [MS-XLS] and
this specification. If the user does not supply an encryption password, a fixed password is used.

= [MS-DOC]: The password is stored in the clear, as described in [MS-DOC], and the document is
not encrypted.

= [MS-PPT]: The password is stored in the clear, as described in [MS-PPT], and the document can
then be encrypted as described in both [MS-PPT] and this specification. If encryption is used and
the user does not supply an encryption password, a fixed password is used.

1.3.5 Digital Signatures
Office binary documents can be signed using one of the following methods:
= A binary format stored in an _signatures storage. This approach is described in section 2.5.1.

» Using xmldsig, as described in [XMLDSig], stored in an _xmlsignatures storage. This approach
is described in sections 2.5.2 and 2.5.3.

1.3.6 Byte Ordering

All data and structures in this document are assumed to be in little-endian format.

1.3.7 String Encoding

In this document, several storages and stream names include the string "0x01", "0x05", "0x06",
and "0x09".These strings are not literally included in the name. Instead, they represent the ASCII
characters with hexadecimal values 0x01, 0x05, 0x06, and 0x09 respectively.

1.3.8 OLE Compound File Path Encoding

Paths to specific storages and streams in an OLE compound file are separated by a backslash (\).
The backslash is a delimiter between parts of the path and, therefore, is not part of the name of any
specific storage or stream. Paths that begin with a backslash are parented to the root storage of the
OLE compound file.

1.3.9 Pseudocode Standard Objects

The pseudocode in this document refers to several objects with associated properties. Accessing a
property of an object is denoted with the following syntax: Object.Property. This section describes
the properties of each object as they are used in this document.

1.3.9.1 Array

An array can be a collection of zero or more child objects of uniform type, where each child is
addressable using an unsigned integer index. Referencing a child object of an array is denoted using
the following syntax: array[index].

14 /116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

%5bMS-XLS%5d.pdf
%5bMS-DOC%5d.pdf
%5bMS-PPT%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=130861
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

Indexes are zero-based and monotonically increase by 1. Therefore, index 0 references the first
element in an array, and index 1 references the second child in the array.

Arrays have the following property:

= Length: The number of child objects in the array.

1.3.9.2 String

A string can be an array of ASCII characters. As in arrays, individual characters in the string are
addressable using a zero-based index.

1.3.9.3 Storage
A storage can be an OLE storage as described by [MS-CFB]. Storages have the following properties:
= Name: A unique identifier for the storage within its parent, as described in [MS-CFB].
= GUID: A 16-byte identifier associated with the storage, as described in [MS-CFB].

= Children: Zero or more child storages or streams. Each child is addressable by its name.

1.3.9.4 Stream
A stream can be an OLE storage as described by [MS-CFB]. Streams have the following properties:
= Name: A unique identifier for the stream within‘its parent, as described in [MS-CFB].

= Data: An array of zero or more unsigned 8-bit integers containing the data in the stream.

1.4 Relationship to Protocols and Other Structures
This specification builds on the compound document specification as described in [MS-CFB].

Some structures in this specification reference structures described in [MS-RMPR]. In addition, the
protocols described in [MS-RMPR] are necessary for obtaining the information required to
understand the transformed data in a document with rights management policy applied.

For encryption operations, this specification also requires an understanding of [MS-XLS], [MS-PPT],

or [MS-DOC].

1.5 Applicability Statement

1.5.1 Data Spaces

The data spaces structure specifies a set of storages and streams within an OLE compound file, the
structures contained in them, and relationships between them. OLE compound files that conform to
the data spaces structure can also have other storages or streams in them that are not specified by
this structure.

1.5.2 IRMDS

The IRMDS structure is required when reading, modifying, or creating documents with rights
management policies applied.

15/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

%5bMS-CFB%5d.pdf
%5bMS-CFB%5d.pdf
%5bMS-CFB%5d.pdf
%5bMS-RMPR%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-PPT%5d.pdf
%5bMS-DOC%5d.pdf

1.5.3 Encryption

The ECMA-376 encryption structure, streams, and storages [ECMA-376] are required when
encrypting ECMA-376 documents [ECMA-376]. When binary file types are encrypted, either
CryptoAPI RC4 encryption, RC4 encryption, or XOR obfuscation is required.

1.6 Versioning and Localization

None.

1.7 Vendor-Extensible Fields

The data spaces structure allows vendors to implement arbitrary transforms, data space definitions,
and data space maps. In this way, the structure can be used to represent any arbitrary
transformation to any arbitrary data.

The IRMDS structure does not contain any vendor-extensible fields.

ECMA-376 document encryption [ECMA-376] MAY be extended if additional CryptoAPI providers are
installed, or if extensible encryption is used.

16 /116
[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

2 Structures

2.1 Data Spaces

The data spaces structure consists of a set of interrelated storages and streams in an OLE
compound file as specified in [MS-CFB].

Software components that interact with data spaces MUST check the DataSpaceVersionInfo
structure (section 2.1.5) contained in the \Ox06DataSpaces\Version stream for the appropriate
version numbers and respect the following rules.

Data space readers:

» Data space readers MUST read the protected content when the reader version is less than or
equal to the highest data spaces structure version understood by the software component.

= Readers MUST NOT read the protected content when the reader version is greater than the
highest data spaces structure version understood by the software component.

Data space updaters:

= Data space updaters MUST preserve the format of the protected content/'when the updater
version is less than or equal to the highest data spaces structure version understood by the
software component.

= Updaters MUST NOT change the protected content when the updater version is greater than the
highest data spaces structure version understood by the software component.

Data space writers:
= Data space writers MUST set the writer version to "1.0".
= Writers MUST set the updater version to "1.0".

= Writers MUST set the reader versionto "1.0".

2.1.1 File

Every document that conforms to the data spaces structure (section 2.1) MUST be an OLE
compound File structure as defined by [MS-CEB]. The File MUST contain the following storages and
streams:

= \Ox06DataSpaces storage: A storage that contains all of the necessary information to
understand the transforms applied to original document content in a given OLE compound file.

= \OxO06DataSpaces\Version stream: A stream containing the DataSpaceVersionInfo
structure, as specified in section 2.1.5. This stream specifies the version of the data spaces
structure used in the file.

= \Ox06DataSpaces\DataSpaceMap stream: A stream containing a DataSpaceMap structure
as specified in section 2.1.6. This stream associates protected content with the data space
definition used to transform it.

= '\Ox06DataSpaces\DataSpacelnfo storage: A storage containing the data space definitions
used in the file. This storage MUST contain one or more streams, each of which contains a
DataSpaceDefinition structure as specified in section 2.1.7. The storage MUST contain exactly
one stream for each DataSpaceMapEntry structure (section 2.1.6.1) in the

17/ 116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

%5bMS-CFB%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-CFB%5d.pdf

\Ox06DataSpaces\DataSpaceMap stream (section 2.2.1). The name of each stream MUST be
equal to the DataSpaceName field of exactly one DataSpaceMapEntry structure contained in
the \Ox06DataSpaces\DataSpaceMap stream.

= \Ox06DataSpaces\TransformInfo storage: A storage containing definitions for the
transforms used in the data space definitions stored in the \Ox06DataSpaces\DataSpacelnfo
storage as specified in section 2.2.2. The stream contains zero or more definitions for the
possible transforms that can be applied to the data in content streams.

Every transform referenced from a data space MUST be defined in a child storage of the
\Ox06DataSpaces\TransformInfo storage (section 2.2.3), each of which is called a transform
storage. Transform storages MUST have a valid storage name.

Each transform storage identifies an algorithm used to transform data and any parameters needed
by that algorithm. Transform storages do not contain actual implementations of transform
algorithms, merely definitions and parameters. It is presumed that all software components that
interact with the protected content have access to an existing implementation of the transform
algorithm.

Every transform storage MUST contain a stream named "0x06Primary". The 0x06Primary stream
MUST begin with a TransformInfoHeader structure (section 2.1.8). Transform storages can
contain other streams or storages if needed by a particular transform.

Transformed content streams and storages: One or more storages or streams containing
protected content. The transformed content is associated with a data space definition by an entry in
the \Ox06DataSpaces\DataSpaceMap stream.

2.1.2 Length-Prefixed Padded Unicode String (UNICODE-LP-P4)

The Length-Prefixed Padded Unicode String structure (UNICODE-LP-P4) contains a length-prefixed
Unicode string, padded to always use a multiple of 4 bytes.

—
N
w

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4(5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

Length

Data (variable)

Padding (variable)

Length (4 bytes): An unsigned integer that specifies the size of the Data field, in bytes. It
MUST be a multiple of 2 bytes.

Data (variable): A Unicode string containing the value of the UNICODE-LP-P4 structure. It
MUST NOT be null-terminated.

18/ 116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

%5bMS-GLOS%5d.pdf

Padding (variable): MUST be of correct size such that the size of the UNICODE-LP-P4
structure is a multiple of 4 bytes. If Padding is present, it MUST be exactly 2 bytes long, and
each byte MUST be 0x00.

2.1.3 Length-Prefixed UTF-8 String (UTF-8-LP-P4)

The Length-Prefixed UTF-8 String structure (UTF-8-LP-P4) contains a length-prefixed UTF-8
string, padded to always use a multiple of 4 bytes.

=
N
w

0|1{2(3(4|5|6|7(8|9|/0|1(2(3|4|5|6[7(8|9|0(1({2|3|4|5|6(7|8|9|0(1

Length

Data (variable)

Padding (variable)

Length (4 bytes): An unsigned integer that specifies the size of the Data field, in bytes.

Data (variable): A UTF-8 string that specifies the value of the UTF-8-LP-P4 structure. It MUST
NOT be null-terminated.

Padding (variable): MUST be of correct size such that the size of the UTF-8-LP-P4 structure is
a multiple of 4 bytes. If Padding is present, each byte MUST be 0x00. If the length is exactly
0x00000000, then this specifies a null string, and the entire structure will use exactly 4 bytes.
If the length is exactly 0x00000004, this specifies an empty string, and the entire structure
also will use exactly 4 bytes.

2.1.4 Version

The Version structure specifies the version of a product or feature. It contains a major and minor
version humber. When comparing version numbers, vMajor MUST be considered the most
significant component and vMinor MUST be considered the least significant component.

0|1|{2(3(4/5|6|7(8|9|/0|12(3|4|5|6[7(8|9|0(1(2|3|4|5|/6(7|8|9|0(1

vMajor vMinor

vMajor (2 bytes): An unsigned integer that specifies the major version number.

vMinor (2 bytes): An unsigned integer that specifies the minor version number.

2.1.5 DataSpaceVersionInfo

The DataSpaceVersionInfo structure indicates the version of the data spaces structure used in a
given file.

19/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

%5bMS-GLOS%5d.pdf

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4(5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

Featureldentifier (variable)

ReaderVersion

UpdaterVersion

WriterVersion

Featureldentifier (variable): A UNICODE-LP-P4 structure (section 2.1.2) that specifies the
functionality for which the DataSpaceVersionInfo structure specifies version information. It
MUST be "Microsoft.Container.DataSpaces".

ReaderVersion (4 bytes): A Version structure (section 2.1.4) that specifies the reader version
of the data spaces structure (section 2.1). ReaderVersion.vMajor MUST be 1.
ReaderVersion.vMinor MUST be 0.

UpdaterVersion (4 bytes): A Version structure that specifies the updater version of the data
spaces structure. UpdaterVersion.vMajor MUST be 1. UpdaterVersion.vMinor MUST be 0.

WriterVersion (4 bytes): A Version structure that specifies the writer version of the data
spaces structure. WriterVersion.vMajor MUST be 1. WriterVersion.vMinor MUST be 0.

2.1.6 DataSpaceMap

The DataSpaceMap structure associates protected content with data space definitions. The data
space definition in turn describes the series of transforms that MUST be applied to that protected
content to restore it to its original form.

By using a map to associate data space definitions with content, a single data space definition can
be used to define the transforms applied to more than one piece of protected content. However, a
given piece of protected content can only be referenced by a single data space definition.

0(1/2(3|4(5|6|7|8]9(0(1|2|3|4(5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

HeaderLength

EntryCount

MapEntries (variable)

HeaderLength (4 bytes): An unsigned integer that specifies the number of bytes in the
DataSpaceMap structure before the first entry in the MapEntries array. It MUST be equal to
0x00000008.

20/ 116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

EntryCount (4 bytes): An unsigned integer that specifies the number of DataSpaceMapEntry
items (section 2.1.6.1) in the MapEntries array.

MapEntries (variable): An array of one or more DataSpaceMapEntry structures.

2.1.6.1 DataSpaceMapEntry Structure

The DataSpaceMapEntry structure associates protected content with a specific data space
definition. It is contained within the DataSpaceMap structure (section 2.1.6).

Reference components MUST always be listed from the most general (storages) to the most specific
(streams). For example, a stream titled "Chapter 1" in a substorage called "Book" off the root
storage of an OLE compound file would have two reference components: "Book" and "Chapter 1" in
that order. The simplest content stream reference is one with a single reference component
indicating the name of a stream in the root storage of the OLE compound file.

=
N
w

0(1/2(3|4(5|6|7(8|9(0{1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|{6|7(8|9(0]1

Length

ReferenceComponentCount

ReferenceComponents (variable)

DataSpaceName (variable)

Length (4 bytes): An unsigned integer that specifies the size of the DataSpaceMapEntry
structure in bytes.

ReferenceComponentCount (4 bytes): An unsigned integer that specifies the number of

DataSpaceReferenceComponent items (section 2.1.6.2) in the ReferenceComponents
array.

ReferenceComponents (variable): An array of one or more
DataSpaceReferenceComponent structures. Each DataSpaceReferenceComponent
structure specifies the name of a storage or stream containing protected content that is
associated with the data space definition named in the DataSpaceName field.

DataSpaceName (variable): A UNICODE-LP-P4 structure (section 2.1.2) that specifies the
name of the data space definition associated with the protected content specified in the
ReferenceComponents field. MUST be equal to the name of a stream in the
\Ox06DataSpaces\DataSpacelnfo storage as specified in section 2.2.2.

2.1.6.2 DataSpaceReferenceComponent Structure

The DataSpaceReferenceComponent structure stores the name of a specific storage or stream

containing protected content. It is contained within the DataSpaceMapEntry structure (section
2.1.6.1).

21/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4(5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

ReferenceComponentType

ReferenceComponent (variable)

ReferenceComponentType (4 bytes): An unsigned integer that specifies whether the
referenced component is a stream or storage. It MUST be 0x00000000 for a stream or
0x00000001 for a storage.

ReferenceComponent (variable): A UNICODE-LP-P4 structure (section 2.1.2) that specifies
the name of the stream or storage containing the protected content to be transformed. If
ReferenceComponentType is 0x00000000, then ReferenceComponent MUST be equal to
the name of a stream contained in the root storage of the OLE compound file. If
ReferenceComponentType is 0x00000001, then ReferenceComponent MUST be equal to
the name of a storage contained in the root storage of the OLE compound file.

2.1.7 DataSpaceDefinition

Each DataSpaceDefinition structure stores a data space definition. A document can contain more
than one data space definition: for example, if one.content stream is both compressed and
encrypted while a second stream is merely encrypted.

Each DataSpaceDefinition structure MUST be stored in a stream in the
\Ox06DataSpaces\DataSpacelInfo storage (section 2.2.2). The name of the stream MUST be
referenced by a DataSpaceReferenceComponent structure (section 2.1.6.2) within a
DataSpaceMapEntry structure (section 2.1.6.1) stored in the
\Ox06DataSpaces\DataSpaceMap stream (section 2.2.1).

TransformReferences MUST be stored in the reverse order in which they have been applied to the
protected content. When reversing the transformation, a software component will apply the
transforms in the order specified in the TransformReferences array.

0(1/2(3|4(5|6|7(8}9(/0(1|2|3|4(5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

HeaderLength

TransformReferenceCount

TransformReferences (variable)

HeaderLength (4 bytes): An unsigned integer that specifies the number of bytes in the
DataSpaceDefinition structure before the TransformReferences field. It MUST be
0x00000008.

22 /116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

TransformReferenceCount (4 bytes): An unsigned integer that specifies the number of items
in the TransformReferences array.

TransformReferences (variable): An array of one or more UNICODE-LP-P4 structures
(section 2.1.2) that specify the transforms associated with this data space definition. Each
transform MUST be equal to the name of a storage contained in the
\Ox06DataSpaces\TransformInfo storage (section 2.2.3).

2.1.8 TransformInfoHeader

The TransformInfoHeader structure specifies the identity of a transform. Additional data or
structures can follow this header in a stream. See section 2.2.6 for an example of usage of
additional data.

0(1/2(3|4(5|6|7(8|9(/0(1|2|3|4|(5|6|7|8|9(0|1(2[3|4(5|6|7(8]9(0]1

TransformLength

TransformType

TransformID (variable)

TransformName (variable)

ReaderVersion

UpdaterVersion

WriterVersion

TransformLength (4 bytes): An unsigned integer that specifies the number of bytes in this
structure before the TransformName field.

TransformType (4 bytes): An unsigned integer that specifies the type of transform to be
applied. It MUST be 0x00000001.

TransformID (variable): A UNICODE-LP-P4 structure (section 2.1.2) that specifies an
identifier associated with a specific transform.

TransformName (variable): A UNICODE-LP-P4 structure that specifies the friendly name of
the transform.

ReaderVersion (4 bytes): A Version structure (section 2.1.4) that specifies the reader
version.

UpdaterVersion (4 bytes): A Version structure that specifies the updater version.

23/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

WriterVersion (4 bytes): A Version structure that specifies the writer version.

2.1.9 EncryptionTransformInfo

The EncryptionTransformlInfo structure specifies the encryption used for ECMA-376 document

encryption [ECMA-376].

0(1/2(3|4(5|6|7(8|9(/0(1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

EncryptionName (variable)

EncryptionBlockSize

CipherMode

Reserved

EncryptionName (variable): A UTF-8-LP-P4 structure (section 2.1.3) that specifies the name
of the encryption algorithm. The name MUST be the name of an encryption algorithm such as
"AES 128", "AES 192", or "AES 256". When used with ‘extensible encryption, this value is
specified by the extensible encryption module.

EncryptionBlockSize (4 bytes): An unsigned integer that specifies the block size for the
encryption algorithm specified by EncryptionName. It MUST be 0x00000010 as specified by
Advanced Encryption Standard (AES). When used with extensible encryption, this value is
specified by the extensible encryption module.

CipherMode (4 bytes): MUST be 0x00000000, except when used with extensible encryption.
When used with extensible encryption, this value is specified by the extensible encryption
module.

Reserved (4 bytes): MUST be 0x00000004.

2.2 Information Rights Management Data Space (IRMDS)

IRMDS defines several data space definitions used to enforce rights management policies that have
been applied to a document. This structure is an extension of the data spaces structure specified in
section 2.1.

IRMDS can be applied to the following types of documents:
= Office’binary documents
= ECMA-376 documents [ECMA-376

In each case, the protected content contains the original document transformed as specified by the
IRMDS structure.<2>

24 /116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

2.2.1 \OxO6DataSpaces\DataSpaceMap Stream

If the original document content is an Office binary document:

The \Ox06DataSpaces\DataSpaceMap stream MUST contain a DataSpaceMap structure
(section 2.1.6) containing at least one DataSpaceMapEntry structure (section 2.1.6.1). The
DataSpaceMapEntry structure:

=It MUST have a DataSpaceName equal to "Ox09DRMDataSpace".

=It MUST have exactly one ReferenceComponents entry with the name "0x09DRMContent" and
the type 0x00000000 (stream).

The \Ox06DataSpaces\DataSpaceMap stream MAY<3> contain a second
DataSpaceMapEntry structure in the DataSpaceMap structure. The second
DataSpaceMapEntry structure:

=It MUST have a DataSpaceName equal to "Ox09LZXDRMDataSpace".

=It MUST have exactly one ReferenceComponents entry with the name
"0x09DRMViewerContent" and the type 0x00000000 (stream).

If the original document content is an ECMA-376 document [ECMA-376]:

The \Ox06DataSpaces\DataSpaceMap stream MUST contain a DataSpaceMap structure
containing exactly one DataSpaceMapEntry structure.

The DataSpaceMapEntry substructure:
=It MUST have a DataSpaceName equal to "DRMEncryptedDataSpace".

=It MUST have exactly one ReferenceComponents entry with the name "EncryptedPackage"
and the type 0x00000000 (stream).

2.2.2 \OxO6DataSpaces\DataSpacelInfo Storage

If the original document content is an Office binary document:

The \Ox06DataSpaces\DataSpacelnfo storage MUST contain a stream named
"0x09DRMDataSpace", which MUST contain a DataSpaceDefinition structure (section 2.1.7):

*The DataSpaceDefinition structure MUST have exactly one TransformReferences entry,
which MUST be "0x09DRMTransform".

The \Ox06DataSpaces\DataSpacelInfo storage MAY<4> contain a stream named
"0x09LZXDRMDataSpace". If this stream exists, it MUST contain a DataSpaceDefinition
structure:

*The DataSpaceDefinition structure MUST have exactly two TransformReferences entries.

=The first TransformReferences entry MUST be "Ox09DRMTransform".

sThe second TransformReferences entry MUST be "0x09LZXTransform".

If the original document content is an ECMA-376 document [ECMA-376]:

The \Ox06DataSpaces\DataSpaceInfo storage MUST contain a stream named
"DRMEncryptedDataSpace", which MUST contain a DataSpaceDefinition structure.

25/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

= The DataSpaceDefinition structure MUST have exactly one TransformReferences entry,
which MUST be "DRMEncryptedTransform".

2.2.3 \OxO6DataSpaces\TransformInfo Storage for Office Binary Documents

If the original document content is an Office binary document, then the
\Ox06DataSpaces\TransformInfo storage MUST contain one storage named
"0x09DRMTransform". The "Ox09DRMTransform" storage MUST contain a stream named
"Ox06Primary". The "0x06Primary" stream MUST contain an IRMDSTransformInfo structure
(section 2.2.6). Within the IRMDSTransformInfo structure, the following values MUST be set:

= TransformInfoHeader.TransformType MUST be 0x00000001.

= TransformInfoHeader.TransformID MUST be "{C73DFACD-061F-43B0-8B64-
0C620D2A8B50}".

* TransformInfoHeader.TransformName MUST be "Microsoft.Metadata.DRMTransform".
* TransformInfoHeader.ReaderVersion MUST be "1.0".

= TransformInfoHeader.UpdaterVersion MUST be "1.0".

* TransformInfoHeader.WriterVersion MUST be "1.0".

The 0x09DRMTransform storage MUST also contain one or more end-user license streams as
specified in section 2.2.7.

The \Ox06DataSpaces\TransformInfo storage MAY<5> contain a substorage named
"0x09LZXTransform". If the 0x09LZXTransform storage exists, it MUST contain a stream named
"0x06Primary". The 0x06Primary stream MUST contain a TransformInfoHeader structure (section
2.1.8). Within the TransformInfoHeader structure, the following values MUST be set:

= TransformType MUST be 0x00000001.

* TransformID MUST be "{86DE7F2B-DDCE-486d-B016-405BBE82B8BC}".
= TransformName MUST be "Microsoft.Metadata.CompressionTransform".
= ReaderVersion MUST be "1.0".

= UpdaterVersion MUST be "1.0".

= WriterVersion MUST be "1.0".

2.2.4 \OxO6DataSpaces\TransformInfo Storage for ECMA-376 Documents

If the original document is an ECMA-376 document [ECMA-376] conforming to the IRMDS structure,
the \Ox06DataSpaces\TransformInfo storage MUST contain one storage named
"DRMEncryptedTransform": The "DRMEncryptedTransform" storage MUST contain a stream named
"0x06Primary". The "0x06Primary" stream MUST contain an IRMDSTransformInfo structure
(section 2.2.6). Within the IRMDSTransformInfo structure, the following values MUST be set:

» TransformInfoHeader.TransformType MUST be 0x00000001.
» TransformInfoHeader.TransformID MUST be "{C73DFACD-061F-43B0-8B64-0C620D2A8B50}".

= TransformInfoHeader.TransformName MUST be "Microsoft.Metadata.DRMTransform".

26/ 116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=113493

= TransformInfoHeader.ReaderVersion MUST be 1.0.
= TransformInfoHeader.UpdaterVersion MUST be 1.0.
= TransformInfoHeader.WriterVersion MUST be 1.0.

The DRMEncryptedTransform storage MUST also contain one or more end-user license streams as
specified in section 2.2.7.

2.2.5 ExtensibilityHeader

The ExtensibilityHeader structure provides a facility to allow an updated header with more
information to be inserted into a larger structure in the future. This structure consists of a.single

element.

-
N
w

0(1/2(3|4(5|6|7(8|9(0{1|2|3|4(5|6|7|8|9(0|1|2(3|4(5|6|7(8|9/(0]1

Length

Length (4 bytes): An unsigned integer that specifies the size of the ExtensibilityHeader
structure. It MUST be 0x00000004.

2.2.6 IRMDSTransformInfo

The IRMDSTransformlInfo structure specifies a specific transform that has been applied to
protected content to enforce rights management policies applied to the document.

1 2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7(8|9(0|1|2[3|4(5|6|7(8|9(0]1

TransformInfoHeader (variable)

ExtensibilityHeader

XrMLLicense (variable)

TransformInfoHeader (variable): A TransformInfoHeader structure (section 2.1.8) that
specifies the identity of the transform applied.

ExtensibilityHeader (4 bytes): An ExtensibilityHeader structure (section 2.2.5).

XrMLLicense (variable): A UTF-8-LP-P4 structure (section 2.1.3) containing a valid XrML
signed issuance license as specified in [MS-RMPR] section 2.2.9.9. The signed issuance license
MAY<6> contain the application-specific name-value attribute pairs name and id as part of
the AUTHENTICATEDDATA element. Documentation for these name-value attribute pairs is
specified in [MS-RMPR] section 2.2.9.7.6.

27/ 116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

%5bMS-RMPR%5d.pdf
%5bMS-RMPR%5d.pdf

2.2.7 End-User License Stream
The end-user license stream contains cached use licenses.

The end-user license stream name MUST be prefixed "EUL-", with a base-32-encoded GUID as the
remainder of the stream name.

The license stream MUST consist of an EndUserLicenseHeader structure (section 2.2.9), followed
by a UTF-8-LP-P4 string (section 2.1.3) containing XML specifying a certificate chain. The
certificate chain MUST include a use license with an enablingbits element containing the symmetric
content key encrypted with the user's RAC public key, as specified in[MS-RMPR] section 2.2.9.1.13.
The XML in this string is derived from a certificatechain element as specified in [MS-RMPR] section
2.2.3.2. Each XrML certificate or license from a certificate element is encoded as a base64-
encoded Unicode string.

The certificate chain has been transformed in the following manner:

1. For each certificate element in the certificate chain:
1. The XrML content of the certificate element is encoded as Unicode.
2. Each resulting string is subsequently base64-encoded.
3. Each resulting string is then placed in a certificate element.

2. The resulting collection of new certificate elements is accumulated in a certificatechain
element.

3. The XML header <?xml version="1.0"?> is prefixed to the resulting certificatechain element.

4. The resulting XML is stored in the stream as a UTF-8-LP-P4 string.

2.2.8 LicenselID
A LicenselD specifies the identity of a user as a Unicode string. The string MUST be of the form

"Windows: <emailaddr>" or "Passport: <emailaddr>", where emailaddr represents a valid e-mail
address as specified in [RFC2822].

2.2.9 EndUserLicenseHeader

The EndUserLicenseHeader structure is a container for a LicenseID (section 2.2.8) as specified

in [MS-RMPR].

0(1(2(3|4(5|6|7|8|9(0(1|2|3|4(5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

Length

ID_String (variable)

Length (4 bytes): An unsigned integer that specifies the size of the EndUserLicenseHeader
structure.

28/ 116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RMPR%5d.pdf
%5bMS-RMPR%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90385
%5bMS-RMPR%5d.pdf

ID_String (variable): A UTF-8-LP-P4 structure (section 2.1.3) that contains a base64-encoded
Unicode LicenselID.

2.2.10 Protected Content Stream

The protected content stream MUST be contained within the root storage. If the original document
content is an ECMA-376 document [ECMA-376], then the stream MUST be named

"EncryptedPackage". For all other original document content types it MUST be named
"\Ox09DRMContent".

The protected content stream has the following structure.

-
N
w

Length

Contents (variable)

Length (8 bytes): An unsigned 64-bit integer that specifies the size in bytes of the plaintext
data stored encrypted in the Contents field.

Contents (variable): Specifies the protected content. The protected content MUST be encrypted
or decrypted with the content symmetric key encrypted for the user in the end-user license as
specified in [MS-RMPR]. Protected content MUST be encrypted or decrypted using AES-128, a

16-byte block size, electronic codebook (ECB) mode, and an initialization vector of all
Zeros.

2.2.11 Viewer Content Stream

The viewer content stream MAY<7> be present. The purpose of the viewer content stream is to
provide a MIME Encapsulation ‘of Aggregate HTML Documents (MHTML) representation of the
document to enable an application that cannot parse the protected content stream (section 2.2.10)
to present a read-only representation of the document to the user. If the viewer content stream is
present, the stream MUST be named "\Ox09DRMViewerContent".

The viewer content stream has the following structure.

-
N
w

Length

Contents (variable)

29/116
[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=113493
%5bMS-RMPR%5d.pdf

Length (8 bytes): An unsigned 64-bit integer that specifies the size in bytes of the compressed
plaintext data stored encrypted in the Contents field.

Contents (variable): Specifies the MHTML representation of the protected content. The
protected content MUST be encrypted or decrypted as specified in [MS-RMPR]. Once
decrypted, the cleartext MUST be decompressed with the LZX compression algorithm

described in [MSDN-CAB].

2.3 Encryption
Encryption and obfuscation are specified in the following sections. The four different techniques are:

= ECMA-376 encryption [ECMA-376], which leverages the data spaces storages specified in section
2.1.

= CryptoAPI RC4 encryption.
= RC4 encryption.
= XOR obfuscation.

ECMA-376 encryption [ECMA-376] also includes encryption using a third-party cryptography
extension, which will be called "extensible encryption" for the remainder of this document.

2.3.1 EncryptionHeaderFlags

The EncryptionHeaderFlags structure specifies properties of the encryption algorithm used. It is
always contained within an EncryptionHeader structure (section 2.3.2).

If the fCryptoAPI bit is set and the fAES bit is not set, RC4 encryption MUST be used. If the fAES
encryption bit is set, a block cipher that supports ECB mode MUST be used. For compatibility with
current implementations, AES encryption with a key length of 128, 192, or 256 bits SHOULD<8> be
used.

o w
[

0|1(2|3|4|5/6(/7|8|910(1(2|3|4|5(6|7|8|9|0(1(2|3|4|5|6|7|8]|9

A|B|C|D|E|F Unused

A - Reserved1l (1 bit): MUST be 0, and MUST be ignored.
B - Reserved2 (1 bit): MUST be 0, and MUST be ignored.

C - fCryptoAPI (1 bit): A flag that specifies whether CryptoAPI RC4 or ECMA-376 encryption
[ECMA-376] is used. It MUST be 1 unless fExternal is 1. If fExternal is 1, it MUST be 0.

D - fDocProps (1 bit): MUST be 0 if document properties are encrypted. Encryption of
document properties is specified in section 2.3.5.4.

E - fExternal (1 bit): If extensible encryption is used, it MUST be 1. If this field is 1, all other
fields in this structure MUST be 0.

30/ 116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

%5bMS-RMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89962
http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113493

F — fAES (1 bit): If the protected content is an ECMA-376 document [ECMA-376], it MUST be 1.
If the FAES bit is 1, the fCryptoAPI bit MUST also be 1.

Unused (26 bits): Undefined and MUST be ignored.
2.3.2 EncryptionHeader

ECMA-376 document encryption [ECMA-376] and Office binary document RC4 CryptoAPI encryption
use the EncryptionHeader structure to specify encryption properties for an encrypted stream.

0(1/2(3|4(5|6|7|8|9(0(1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|6|7(8[9(0]1

Flags

SizeExtra

AlgID

AlgIDHash

KeySize

ProviderType

Reserved1

Reserved2

CSPName

Flags (4 bytes): An EncryptionHeaderFlags structure that specifies properties of the
encryption algorithm used as specified in section 2.3.1.

SizeExtra (4 bytes): Reserved, and it MUST be 0x00000000.

AlgID (4 bytes): A signed integer that specifies the encryption algorithm. It MUST be one of the
values described in the following table.

Value Algorithm
0x00000000 Determined by Flags
0x00006801 RC4

0x0000660E 128-bit AES
0x0000660F 192-bit AES
0x00006610 256-bit AES

31/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

The Flags field and AIgID field contain related values and MUST be set to one of the
combinations in the following table.

Flags.fCryptoAPI Flags.fAES Flags.fExternal AlgID Algorithm

0 0 1 0x00000000 Determined by application
1 0 0 0x00000000 | RC4

1 0 0 0x00006801 RC4

1 1 0 0x00000000 | 128-bit AES

1 1 0 0x0000660E | 128-bit AES

1 1 0 0x0000660F 192-bit AES

1 1 0 0x00006610 | 256-bit AES

AlgIDHash (4 bytes): A signed integer that specifies the hashing algorithm in concert with the
Flags.fExternal bit. It MUST be one of the combinations in the following table.

AlgIDHash Flags.fExternal Algorithm

0x00000000 1 Determined by application
0x00000000 0 SHA-1

0x00008004 0 SHA-1

KeySize (4 bytes): An unsigned integer that specifies the humber of bits in the encryption key.
It MUST be a multiple of 8. And it MUST be one of the values in the following table.

Algorithm Value Comment

Any 0x00000000 Determined by Flags.

RC4 0x00000028 - 0x00000080 (inclusive) 8-bit increments.

AES 0x00000080, 0x000000C0O, 0x00000100 128-bit, 192-bit, or 256-bit.

If the Flags field does not have the fCryptoAPI bit set, the KeySize field MUST be
0x00000000. If RC4 is used, the value MUST be compatible with the chosen cryptographic
service provider (CSP).

ProviderType (4 bytes): An implementation-specified value that corresponds to constants
accepted by the specified CSP. It MUST be compatible with the chosen CSP. It SHOULD<9> be
one of the following values.

Algorithm Value Comment

Any 0x00000000 Determined by Flags
RC4 0x00000001

AES 0x00000018

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

32/116

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

If the Flags field does not have the fCryptoAPI bit set, the ProviderType field MUST be
0x00000000.

Reservedl (4 bytes): Undefined and MUST be ignored.
Reserved2 (4 bytes): MUST be 0x00000000 and MUST be ignored.

CSPName (variable): A null-terminated Unicode string that specifies the CSP name.
2.3.3 EncryptionVerifier

The EncryptionVerifier structure is used by Office Binary Document RC4 CryptoAPI Encryption
(section 2.3.5) and ECMA-376 Document Encryption (section 2.3.4). Every usage of this structure

MUST specify the hashing algorithm and encryption algorithm used in the EncryptionVerifier
structure.

Verifier can be 16 bytes of data randomly generated each time the structure is created. Verifier is
not stored in this structure directly.

0|1|{2(3(4|5|/6|7(8|9|/0|1|2(3|4|5|6[7(8|9|0(1(2|3|4|5]|/6(7|8|9|0(1

SaltSize

Salt (16 bytes)

EncryptedVerifier (16 bytes)

VerifierHashSize

EncryptedVerifierHash (variable)

SaltSize (4 bytes): An unsigned integer that specifies the size of the Salt field. It MUST be
0x00000010.

Salt (16 bytes): An array of bytes that specifies the salt value used during password hash
generation. It MUST NOT be the same data used for the verifier stored encrypted in the
EncryptedVerifier field.

EncryptedVerifier (16 bytes): MUST be the randomly generated Verifier value encrypted
using the algorithm chosen by the implementation.

VerifierHashSize (4 bytes): An unsigned integer that specifies the number of bytes needed to
contain the hash of the data used to generate the EncryptedVerifier field.

EncryptedVerifierHash (variable): An array of bytes that contains the encrypted form of
the hash of the randomly generated Verifier value. The length of the array MUST be the size

33/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

%5bMS-GLOS%5d.pdf

of the encryption block size multiplied by the number of blocks needed to encrypt the hash of
the Verifier. If the encryption algorithm is RC4, the length MUST be 20 bytes. If the
encryption algorithm is AES, the length MUST be 32 bytes. After decrypting the
EncryptedVerifierHash field, only the first VerifierHashSize bytes MUST be used.

The EncryptionVerifier structure MUST be set using the following process:
1. Random data is generated and written into the Salt field.

2. The encryption key is derived from the password and salt, as specified in section 2.3.4.7 or
2.3.5.2, with block humber 0.

3. Generate 16 bytes of additional random data as the Verifier.
4. The results of step 3 are encrypted and written into the EncryptedVerifier field.

5. For the chosen hashing algorithm, obtain the size of the hash data and write this value into
the VerifierHashSize field.

6. Obtain the hashing algorithm output by using as input the data generated in step 3.

7. Encrypt the hashing algorithm output from step 6 by using the chosen encryption
algorithm, and write the output into the EncryptedVerifierHash field.

2.3.4 ECMA-376 Document Encryption

When an ECMA-376 document [ECMA-376] is encrypted as specified in [ECMA-376] Part 3 Annex C
Table C-5, BIT 0 a structured storage utilizing the data spaces construct as specified in section 2.1
MUST be used. Unless exceptions are noted in the following sections, streams and storages
contained within the \Ox06DataSpaces storage MUST be present as specified in section 2.1.1.

2.3.4.1 \OxO6DataSpaces\DataSpaceMap Stream
The data space map MUST contain the following structure:

= The \Ox06DataSpaces\DataSpaceMap stream MUST contain a DataSpaceMap structure
(section 2.1.6) containing exactly one DataSpaceMapEntry structure (section 2.1.6.1).

* The DataSpaceMapEntry structure:
= MUST have a DataSpaceName equal to "StrongEncryptionDataSpace".

= MUST have exactly one ReferenceComponents entry with the name "EncryptedPackage" and
the type 0x00000000 (stream).

2.3.4.2 \OxO6DataSpaces\DataSpacelInfo Storage
The DataSpacelInfo storage MUST contain the following stream:

= The \Ox06DataSpaces\DataSpacelInfo storage MUST contain a stream named
"StrongEncryptionDataSpace", which MUST contain a DataSpaceDefinition structure (section
2.1.7).

= The DataSpaceDefinition structure MUST have exactly one TransformReferences entry,
which MUST be "StrongEncryptionTransform".

34/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

2.3.4.3 \OxO6DataSpaces\TransformInfo Storage

The \Ox06DataSpaces\TransformInfo storage MUST contain one storage named
"StrongEncryptionTransform". The "StrongEncryptionTransform" storage MUST contain a stream
named "0x06Primary". The "Ox06Primary" stream MUST contain an IRMDSTransformInfo
structure (section 2.2.6). Within the IRMDSTransformInfo structure, the following values MUST
be set:

= TransformInfoHeader.TransformType MUST be 0x00000001.

= TransformInfoHeader.TransformID MUST be "{FF9A3F03-56EF-4613-BDD5-
5A41C1D07246}".

» TransformInfoHeader.TransformName MUST be "Microsoft.Container.EncryptionTransform".
* TransformInfoHeader.ReaderVersion MUST be "1.0".

= TransformInfoHeader.UpdaterVersion MUST be "1.0".

= TransformInfoHeader.WriterVersion MUST be "1.0".

Following the IRMDSTransformInfo structure, there MUST be an EncryptionTransformInfo
structure (section 2.1.9) that specifies the encryption algorithms to be used. However, if the
algorithms specified in the EncryptionTransformInfo structure differ from the algorithms specified
in the EncryptionInfo stream, the EncryptionInfo stream MUST be considered authoritative. If the
agile encryption method is used, the EncryptionName field of the EncryptionTransformInfo
structure MUST be a null string (0x00000000).

2.3.4.4 \EncryptedPackage Stream

The \EncryptedPackage stream is an encrypted stream of bytes containing the entire ECMA-376
source file [ECMA-376] in compressed form.

—
N
w

0|1{2({3(4|5|/6|7(8|9|/0|1|2(3|4|5|6[7(8|9|0(1(2|3|4|5|/6(7|8|9|0(1

StreamSize

EncryptedData (variable)

StreamSize (8 bytes): An unsigned integer that specifies the number of bytes used by data
encrypted within the EncryptedData field, not including the size of the StreamSize field.
Note that the actual size of the \EncryptedPackage stream can be larger than this value,
depending on the block size of the chosen encryption algorithm

EncryptedData (variable): Data encrypted using the algorithm specified within the
\EncryptionInfo stream (section 2.3.4.5).

35/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=113493

2.3.4.5 \EncryptionInfo Stream (Standard Encryption)

The \EncryptionInfo stream contains detailed information used to initialize the cryptography used
to encrypt the \EncryptedPackage stream, as specified in section 2.3.4.4, when standard
encryption is used.

If an external encryption provider is used, see section 2.3.4.6.

0(1/2(3|4(5|6|7(8|9(/0(1|2|3|4|(5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

EncryptionVersionInfo

EncryptionHeader.Flags

EncryptionHeaderSize

EncryptionHeader (variable)

EncryptionVerifier (variable)

EncryptionVersionInfo (4 bytes): A Version structure (section 2.1.4) where Version.vMajor
MUST be 0x0003 or 0x0004,<10> and Version.vMinor MUST be 0x0002.

EncryptionHeader.Flags (4 bytes): A copy of the Flags stored in the EncryptionHeader field
of this structure.

EncryptionHeaderSize (4 bytes): An unsigned integer that specifies the size in bytes of the
EncryptionHeader field of this structure.

EncryptionHeader (variable): An EncryptionHeader structure (section 2.3.2) that specifies
parameters used to encrypt data. The values MUST be set as described in the following table.

Field Value

Flags The fCryptoAPI and fAES bits MUST be set. The fDocProps bit MUST be 0.

SizeExtra MUST be 0x00000000.

AlgID MUST be 0x0000660E (AES-128), 0x0000660F (AES-192), or 0x00006610 (AES-
256).

AlgIDHash MUST be 0x00008004 (SHA-1).

KeySize MUST be 0x00000080 (AES-128), 0x000000C0 (AES-192), or 0x00000100 (AES-
256).

ProviderType | SHOULD<11> be 0x00000018 (AES).

Reservedl1 Undefined and MUST be ignored.

36/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

Field Value

Reserved2 MUST be 0x00000000 and MUST be ignored.

CSPName SHOULD<12> be set to either "Microsoft Enhanced RSA and AES Cryptographic
Provider" or "Microsoft Enhanced RSA and AES Cryptographic Provider
(Prototype)" as a null-terminated Unicode string.

EncryptionVerifier (variable): An EncryptionVerifier structure, as specified in section 2.3.3,
and generated as specified in section 2.3.4.8.

2.3.4.6 \EncryptionInfo Stream (Extensible Encryption)

ECMA-376 documents [ECMA-376] can optionally use user-provided custom (extensible) encryption
modules. When extensible encryption is used, the \EncryptionInfo stream MUST contain the
structure described in the following table.

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4|5/6|7(8|9(0]1

EncryptionVersionInfo

EncryptionHeader.Flags

EncryptionHeaderSize

EncryptionHeader (variable)

EncryptionInfo(variable)

EncryptionVerifier (variable)

EncryptionVersionInfo (4 bytes): A Version structure (section 2.1.4) where Version.vMajor
MUST be 0x0003 or 0x0004 and Version.vMinor MUST be 0x0003.

EncryptionHeader.Flags (4 bytes): A copy of the Flags stored in the EncryptionHeader field
of this structure as specified in section 2.3.1. It MUST have the fExternal bit set to 1. All
other bits in this field MUST be set to 0.

EncryptionHeaderSize (4 bytes): An unsigned integer that specifies the size, in bytes, of the
EncryptionHeader field of this structure, including the GUID specifying the extensible
encryption module.

EncryptionHeader (variable): Specifies an EncryptionHeader structure (section 2.3.2) used
to encrypt the structure. The values MUST be set as described in the following table.

37/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=113493

Field Value

Flags MUST have the fExternal bit set to 1. All other bits MUST be set to 0.
SizeExtra MUST be 0x00000000.

AlgID MUST be 0x00000000.

AlgIDHash MUST be 0x00000000.

KeySize MUST be 0x00000000.

ProviderType MUST be 0x00000000.

Reservedl Undefined and MUST be ignored.

Reserved2 MUST be 0x00000000 and MUST be ignored.

CSPName Specifies a unique identifier of an encryption module.<13>

EncryptionInfo (variable): A Unicode string that specifies an EncryptionData element. The

first Unicode code point MUST be OxFEFF.

The EncryptionData XML element MUST conform to the following XMLSchema namespace

as specified by [W3C-XSD].

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="urn:schemas-microsoft-com:office:office"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="EncryptionData">
<xs:complexType>
<xs:sequence>
<xs:element name="EncryptionProvider">
<xs:complexType>
<xs:sequence>
<xs:element name="EncryptionProviderData">
<xs:simpleType>
<xs:restriction base="xs:base64Binary"/>
</xs:simpleType>
</xs:element>
</xs:sequence>
<xs:attribute name="Id" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="\{[0-9A-Fa-f]{8}\-[0-9A-Fa-f]{4}\-
[0-9A-Fa-f]{4}\-[0-9A-Fa-f] {4}\-[0-9A-Fa-f]{12}\}"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Url" type="xs:anyURI" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

38/ 116

http://go.microsoft.com/fwlink/?LinkId=90563

Element Parent Attribute | Value

EncryptionData xmins urn:schemas-microsoft-
com:office:office

EncryptionProvider EncryptionData

Id GUID of the extensible
encryption module, expressed
as a string

Url A URL where the extensible
encryption module can be
obtained

EncryptionProviderData EncryptionProvider base64-encoded data used by
the extensible module

EncryptionVerifier (variable): An EncryptionVerifier structure, as specified in section 2.3.3,
and generated as specified in section 2.3.4.8.

2.3.4.7 ECMA-376 Document Encryption Key Generation (Standard Encryption)

The encryption key for ECMA-376 document encryption [ECMA-376] MUST be generated by using
the following method, which is derived from PKCS #5: Password-Based Cryptography Version 2.0
RFC2898].

Let H() be a hashing algorithm as determined by the EncryptionHeader.AlgIDHash field, H, be
the hash data of the n*" iteration, and a plus sign (+) represent concatenation. This hashing
algorithm MUST be SHA-1. The password MUST be provided as an array of Unicode characters.
Limitations on the length of the password and the characters used by the password are
implementation dependent. Current behavior variations are documented in section 5. The initial
password hash is generated as follows.

= HO = H(salt + password)

The salt used MUST be generated randomly, and MUST be 16 bytes in size. The salt MUST be stored
in the EncryptionVerifier.Salt field contained within the \EncryptionInfo stream as specified in
section 2.3.4.5. The hash is then iterated using the following approach.

= Hn = H(iterator + Hn-1)

Where iterator is an unsigned 32-bit value that is initially set to 0x00000000, and is then
incremented monotonically on each iteration until 50,000 iterations have been performed. The value
of the iterator on the last iteration MUST be 49,999.

Once the final hash data has been obtained, the encryption key MUST be generated using the final
hash data, and the block number MUST be 0x00000000. The encryption algorithm MUST be
specified in the EncryptionHeader.AlgID field. The encryption algorithm MUST use ECB mode. The
method used to generate the hash data that is the input into the key derivation algorithm as follows.

= Hfinal = H(Hn + block)
The encryption key derivation method is specified by the following steps:

1. Let cbRequiredKeyLength be equal to the size in bytes of the required key length for the
relevant encryption algorithm as specified by the EncryptionHeader structure.
cbRequiredKeyLength MUST be less than or equal to 40.

39/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=119708

5.
6.

. Let cbHash be the number of bytes output by hashing algorithm H.

. Form a 64-byte buffer by repeating the constant 0x36 64 times. XOR Hs,4 into the first cbHash

bytes of this buffer, and compute a hash of the resulting 64-byte buffer using hashing algorithm
H. This will yield a hash value of length cbHash. Let the resultant value be called X1.

. Form another 64-byte buffer by repeating the constant 0x5C 64 times. XOR the Hy,y into the first

cbHash bytes of this buffer, and compute a hash of the resulting 64-byte buffer using hash
algorithm H. This yields a hash value of length cbHash. Let the resultant value be called X2.

Concatenate X1 with X2 to form X3, which will yield a value twice the length of cbHash.

Let keyDerived be equal to the first cbRequiredKeyLength bytes of X3.

2.3.4.8 Password Verifier Generation (Standard Encryption)

The password verifier uses an EncryptionVerifier structure as specified in section 2.3.3. The
password verifier Salt field MUST be equal to the salt created during password key generation, as
specified in section 2.3.4.7. A randomly generated verifier is then hashed using the SHA-1 hashing
algorithm specified in the EncryptionHeader structure, and encrypted using the key generated as
specified in section 2.3.4.7, with a block number of 0x00000000.

2.3.4.9 Password Verification (Standard Encryption)

Passwords MUST be verified using the following steps:

1.
2.

Generate an encryption key as specified in section 2.3.4.7.

Decrypt the EncryptedVerifier field of the EncryptionVerifier structure as specified in section
2.3.3, and generated as specified in section 2.3.4.8, to obtain the Verifier value. The resultant
Verifier value MUST be an array of 16 bytes:

. Decrypt the EncryptedVerifierHash field of the EncryptionVerifier structure to obtain the

hash of the Verifier value. The number of bytes used by the encrypted Verifier hash MUST be
32. The number of bytes used by the decrypted Verifier hash is given by the VerifierHashSize
field, which MUST be 20.

. Calculate the SHA-1 hash value of the Verifier value calculated in step 2.

. Compare the results of step 3 and step 4. If the two hash values do not match, the password is

incorrect.

2.3.4.10 \EncryptionInfo Stream (Agile Encryption)

The \EncryptionInfo stream contains detailed information about the cryptography used to encrypt
the \EncryptedPackage stream (section 2.3.4.4) when agile encryption is used.

0|4{2(3(4|5|6(7(8|9|/0|12|3|4|5|6[7(8|9|0(1(2|3|4|5|/6(7|8|9|0(1

-
N
w

EncryptionVersionInfo

Reserved

40/ 116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

XmlEncryptionDescriptor (variable)

EncryptionVersionInfo (4 bytes): A Version structure (section 2.1.4) where Version.vMajor
MUST be 0x0004, and Version.vMinor MUST be 0x0004.

Reserved (4 bytes): MUST be 0x00000040.

XmlIEncryptionDescriptor (variable): The XmlEncryptionDescriptor XML element MUST
conform to the following "XMLSchema" namespace as specified by [W3C-XSD].

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://schemas.microsoft.com/office/2006/encryption"
xmlns="http://schemas.microsoft.com/office/2006/encryption"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:simpleType name="ST SaltSize">
<xs:restriction base="xs:unsignedInt">
<xs:minInclusive value="1" />
<xs:maxInclusive value="65536" />
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="ST BlockSize">
<xs:restriction base="xs:unsignedInt">
<xs:minInclusive value="2" />
<xs:maxInclusive value="4096" />
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="ST KeyBits">
<xs:restriction base="xs:unsignedInt">
<xs:minInclusive value="8" />
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="ST HashSize">
<xs:restriction base="xs:unsignedInt">
<xs:minInclusive value="1" />
<xs:maxInclusive value="65536" />
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="ST SpinCount">
<xs:restriction base="xs:unsignedInt">
<xs:minInclusive value="0" />
<xs:maxInclusive value="10000000" />
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="ST CipherAlgorithm">
<xs:restriction base="xs:string">
<xs:minLength value="1" />
</xs:restriction>
</xs:simpleType>

41/116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=90563

<xs:simpleType name="ST CipherChaining">
<xs:restriction base="xs:string">
<xs:minLength value="1" />
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="ST HashAlgorithm">
<xs:restriction base="xs:string">
<xs:minLength value="1" />
</xs:restriction>
</xs:simpleType>

<xs:complexType name="CT_ KeyData">
<xs:attribute name="saltSize" type="ST SaltSize" use="required" />
<xs:attribute name="blockSize" type="ST BlockSize" use="required" />
<xs:attribute name="keyBits" type="ST KeyBits" use="required" />
<xs:attribute name="hashSize" type="ST HashSize" use="required" />
<xs:attribute name="cipherAlgorithm" type="ST CipherAlgorithm" use="required"
/>
<xs:attribute name="cipherChaining" type="ST CipherChaining" use="required" />
<xs:attribute name="hashAlgorithm" type="ST HashAlgorithm" use="required" />
<xs:attribute name="saltValue" type="xs:base64Binary" use="required" />
</xs:complexType>

<xs:complexType name="CT Datalntegrity">
<xs:attribute name="encryptedHmacKey" type="xs:base64Binary" use="required" />
<xs:attribute name="encryptedHmacValue" type="xs:base64Binary" use="required"
/>
</xs:complexType>

<xs:complexType name="CT KeyEncryptor">
<xs:sequence>
<xs:any processContents="lax" />
</xs:sequence>
<xs:attribute name="uri" type="xs:token" />
</xs:complexType>

<xs:complexType name="CT KeyEncryptors">
<xs:sequence>
<xs:element name="keyEncryptor" type="CT KeyEncryptor" minOccurs="1"
maxOccurs="unbounded" /> B
</xs:sequence>
</xs:complexType>

<xs:complexType name="CT Encryption">
<xs:sequence>
<xs:element name="keyData" type="CT KeyData" minOccurs="1" maxOccurs="1" />
<xs:element name="dataIntegrity" type="CT DatalIntegrity" minOccurs="0"
maxOccurs="1" /> B
<xs:element name="keyEncryptors" type="CT KeyEncryptors" minOccurs="1"
maxOccurs="1" />
</xs:sequence>
</xs:complexType>

<xs:element name="encryption" type="CT Encryption" />
</xs:schema>

42/ 116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

SaltSize: An unsigned integer that specifies the number of bytes utilized by a salt. It MUST
be at least 1, and no greater than 65536.

BlockSize: An unsigned integer that specifies the number of bytes used to encrypt one block
of data. It MUST be at least 2, no greater than 4096, and a multiple of 2.

KeyBits: An unsigned integer that specifies the number of bits utilized by an encryption
algorithm. It MUST be at least 8, and a multiple of 8.

HashSize: An unsigned integer that specifies the number of bytes utilized by a hash value. It
MUST be at least 1, and no greater than 65536. And it MUST be the same number of bytes as
the hash algorithm emits.

SpinCount: An unsigned integer that specifies the humber of times to iterate on a hash of a
password. It MUST NOT be greater than 10,000,000.

CipherAlgorithm: A string that specifies the cipher algorithm. The values in the following
table are defined.

Value Cipher algorithm

AES MUST conform to the AES algorithm.

RC2 MUST conform to [RFC2268].<14>

RC4 MUST NOT be used.

DES MUST conform to the DES algorithm.<15>

DESX MUST conform to the [DRAFT-DESX] algorithm.<16>
3DES MUST conform to the [REC1851] algorithm.<17>
3DES_112 MUST conform to the [RFC18511] algorithm.<18>

Values that are not defined MAY<19> be used, and a compliant implementation is not
required to support all defined values. The string MUST be at least 1 character.

CipherChaining: A string that specifies the chaining mode used by the CipherAlgorithm.
For further details about chaining modes, see [BCMO800-38A]. It MUST be one of the values
described in the following table.

Value Chaining mode
ChainingModeCBC Cipher block chaining (CBC).
ChainingModeCFB Cipher feedback chaining (CFB), with 8-bit window.

HashAlgorithm: A string specifying a hashing algorithm. The values described in the
following table are defined.

Value Hash algorithm
SHA-1 MUST conform to [RFC4634].
SHA256 MUST conform to [RFC4634].

43/ 116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=128904
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=128905
http://go.microsoft.com/fwlink/?LinkId=128901
http://go.microsoft.com/fwlink/?LinkId=128901
http://go.microsoft.com/fwlink/?LinkId=113491
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90486
http://go.microsoft.com/fwlink/?LinkId=90486

Value Hash algorithm

SHA384 MUST conform to [RFC4634].
SHA512 MUST conform to [RFC4634].

MD5 MUST conform to MD5.

MD4 MUST conform to [RFC1320].

MD2 MUST conform to [RFC1319].
RIPEMD-128 MUST conform to [ISO/IEC 10118].
RIPEMD-160 MUST conform to [ISO/IEC 10118].
WHIRLPOOL MUST conform to [ISO/IEC 10118].

Values that are not defined MAY<20> be used, and a compliant implementation is not
required to support all defined values. The string MUST be at least 1 character. See section 4
for additional information.

KeyData: A complex type that specifies the encryption used within this'element. The
saltValue attribute is a base64-encoded binary value that is randomly generated. The
number of bytes required to decode the saltValue attribute MUST be equal to the value of
the saltSize attribute.

Datalntegrity: A complex type that specifies data used to verify whether the encrypted data
passes an integrity check. It MUST be generated using the method specified in section
2.3.4.14. This type is composed of the following simple types:

= encryptedHmacKey: A base64-encoded value that specifies an encrypted key utilized in
calculating the encryptedHmacValue.

= encryptedHmacValue: A base64-encoded value that specifies an HMAC derived from the
encryptedHmacKey and the encrypted data.

KeyEncryptor: A complex type that specifies the parameters used to encrypt an intermediate
key, which is used to perform the final encryption of the document. To ensure extensibility,
arbitrary elements can be defined to encrypt the intermediate key. The intermediate key
MUST be the same for all KeyEncryptor elements. A PasswordKeyEncryptor and a
CertificateKeyEncryptor are defined following this schema definition.

KeyEncryptors: A sequence of KeyEncryptor elements. Exactly one KeyEncryptors
element MUST be present, and the KeyEncryptors element MUST contain at least one
KeyEncryptor.

Encryption: A complex type composed of the following elements that specify the encryption
properties:

= keyData: One KeyData element MUST be present.
» datalntegrity: One Datalntegrity element MUST<21> be present.
= keyEncryptors: One KeyEncryptors sequence MUST be present.

The KeyEncryptor element, which MUST be used when encrypting password-protected agile
encryption documents, is either a PasswordKeyEncryptor or a CertificateKeyEncryptor.

44/ 116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

http://go.microsoft.com/fwlink/?LinkId=90486
http://go.microsoft.com/fwlink/?LinkId=90486
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90274
http://go.microsoft.com/fwlink/?LinkId=128903
http://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409
%5bMS-GLOS%5d.pdf

Exactly one PasswordKeyEncryptor MUST be present. Zero or more
CertificateKeyEncryptor elements are contained within the KeyEncryptors element. The
PasswordKeyEncryptor is specified by the following schema.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://schemas.microsoft.com/office/2006/keyEncryptor/password"
xmlns="http://schemas.microsoft.com/office/2006/keyEncryptor/password"
xmlns:e="http://schemas.microsoft.com/office/2006/encryption"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:import namespace="http://schemas.microsoft.com/office/2006/encryption"
schemalocation="encryptionInfo.xsd" />

<xs:simpleType name="ST PasswordKeyEncryptorUri">
<xs:restriction base="xs:token">
<xs:enumeration
value="http://schemas.microsoft.com/office/2006/keyEncryptor/password" />
</xs:restriction>
</xs:simpleType>

<xs:complexType name="CT PasswordKeyEncryptor">
<xs:attribute name="saltSize" type="e:ST SaltSize" use="required" />
<xs:attribute name="blockSize" type="e:ST BlockSize" use="required" />
<xs:attribute name="keyBits" type="e:ST KeyBits" /use="required" />
<xs:attribute name="hashSize" type="e:ST HashSize" use="required" />
<xs:attribute name="cipherAlgorithm" type="e:ST CipherAlgorithm" use="required"
/>
<xs:attribute name="cipherChaining" type="e:ST CipherChaining" use="required"
/>
<xs:attribute name="hashAlgorithm" type="e:ST HashAlgorithm" use="required" />
<xs:attribute name="saltValue" type="xs:baset4Binary" use="required" />
<xs:attribute name="spinCount" type="e:ST SpinCount" use="required" />
<xs:attribute name="encryptedVerifierHashInput" type="xs:base64Binary"
use="required" />
<xs:attribute name="encryptedVerifierHashValue" type="xs:baset4Binary"
use="required" />
<xs:attribute name="encryptedKeyValue" type="xs:base64Binary" use="required" />
</xs:complexType>

<xs:element name="encryptedKey" type="CT PasswordKeyEncryptor" />
</xs:schema>

saltSize: A SaltSize that specifies the size of the salt for a PasswordKeyEncryptor.
blockSize: A BlockSize that specifies the block size for a PasswordKeyEncryptor.
keyBits: A KeyBits that specifies the number of bits for a PasswordKeyEncryptor.

hashSize: A HashSize that specifies the size of the binary form of the hash for a
PasswordKeyEncryptor.

cipherAlgorithm: A CipherAlgorithm that specifies the cipher algorithm for a
PasswordKeyEncryptor. The cipher algorithm specified MUST be the same as the cipher
algorithm specified for the Encryption.keyData element.

cipherChaining: A CipherChaining that specifies the cipher chaining mode for a
PasswordKeyEncryptor.

45/ 116

[MS-OFFCRYPTO] — v20120122
Office Document Cryptography Structure Specification

Copyright © 2012 Microsoft Corporation.

Release: Sunday, January 22, 2012

hashAlgorithm: A HashAlgorithm that specifies the hashing algorithm for a
PasswordKeyEncryptor. The hashing algorithm specified MUST be the same as the hashing
algorithm specified for the Encryption.keyData element.

saltValue: A base64-encoded binary byte array that specifies the salt value for a
PasswordKeyEncryptor. The number of bytes required by the decoded form of this element
MUST be saltSize bytes.

spinCount: A SpinCount that specifies the spin count for a PasswordKeyEncryptor.

encryptedVerifierHashInput: A base64-encoded value that specifies the encrypted verifier
hash input for a PasswordKeyEncryptor used in password verification.

encryptedVerifierHashValue: A base64-encoded value that specifies the encrypted verifier
hash value for a PasswordKeyEncryptor used in password verification.

encryptedKeyValue: A base64-encoded value that specifies the encrypted form of the
intermediate key.

The CertificateKeyEncryptor is specified by the following schema:

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://schemas.microsoft.com/office/2006/keyEncryptor/certificate"
xmins="http://schemas.microsoft.com/office/2006/keyEncryptor/certificate"
xmins:e="http://schemas.microsoft.com/office/2006/encryption"
xmlins:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:import namespace="http://schemas.microsoft.com/office/2006/encryption"
schemalocation="encryptionInfo.xsd" />

<xs:simpleType name="ST_PasswordKeyEncryptorUri">
<xs:restriction base="xs:token">

<xs:enumeration value="http://schemas.microsoft.com/office/2006/keyEncryptor/certificate"
/>

</xs:restriction>

</xs:simpleType>

<xs:complexType n